HomeHome Metamath Proof Explorer
Theorem List (p. 287 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 28601-28700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremphop 28601 A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑁 = (normCV𝑈)       (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
 
18.5.2  Examples of pre-Hilbert spaces
 
Theoremcncph 28602 The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, abs⟩       𝑈 ∈ CPreHilOLD
 
Theoremelimph 28603 Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑍 = (0vec𝑈)    &   𝑈 ∈ CPreHilOLD       if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋
 
Theoremelimphu 28604 Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007.) (New usage is discouraged.)
if(𝑈 ∈ CPreHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CPreHilOLD
 
18.5.3  Properties of pre-Hilbert spaces
 
Theoremisph 28605* The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)       (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
 
Theoremphpar2 28606 The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)       ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
 
Theoremphpar 28607 The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑁 = (normCV𝑈)       ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
 
Theoremip0i 28608 A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐶𝑋    &   𝑁 = (normCV𝑈)    &   𝐽 ∈ ℂ       ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2)))
 
Theoremip1ilem 28609 Lemma for ip1i 28610. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐶𝑋    &   𝑁 = (normCV𝑈)    &   𝐽 ∈ ℂ       (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
 
Theoremip1i 28610 Equation 6.47 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐶𝑋       (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
 
Theoremip2i 28611 Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋       ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))
 
Theoremipdirilem 28612 Lemma for ipdiri 28613. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐶𝑋       ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
 
Theoremipdiri 28613 Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD       ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
 
Theoremipasslem1 28614 Lemma for ipassi 28624. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐵𝑋       ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
 
Theoremipasslem2 28615 Lemma for ipassi 28624. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐵𝑋       ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))
 
Theoremipasslem3 28616 Lemma for ipassi 28624. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐵𝑋       ((𝑁 ∈ ℤ ∧ 𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
 
Theoremipasslem4 28617 Lemma for ipassi 28624. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐵𝑋       ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))
 
Theoremipasslem5 28618 Lemma for ipassi 28624. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐵𝑋       ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
 
Theoremipasslem7 28619* Lemma for ipassi 28624. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on . (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))    &   𝐽 = (topGen‘ran (,))    &   𝐾 = (TopOpen‘ℂfld)       𝐹 ∈ (𝐽 Cn 𝐾)
 
Theoremipasslem8 28620* Lemma for ipassi 28624. By ipasslem5 28618, 𝐹 is 0 for all ; since it is continuous and is dense in by qdensere2 23402, we conclude 𝐹 is 0 for all . (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))       𝐹:ℝ⟶{0}
 
Theoremipasslem9 28621 Lemma for ipassi 28624. Conclude from ipasslem8 28620 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋       (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
 
Theoremipasslem10 28622 Lemma for ipassi 28624. Show the inner product associative law for the imaginary number i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝑁 = (normCV𝑈)       ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵))
 
Theoremipasslem11 28623 Lemma for ipassi 28624. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋       (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
 
Theoremipassi 28624 Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD       ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))
 
Theoremdipdir 28625 Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
 
Theoremdipdi 28626 Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
 
Theoremip2dii 28627 Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝐶𝑋    &   𝐷𝑋       ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))
 
Theoremdipass 28628 Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))
 
Theoremdipassr 28629 "Associative" law for second argument of inner product (compare dipass 28628). (Contributed by NM, 22-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑃(𝐵𝑆𝐶)) = ((∗‘𝐵) · (𝐴𝑃𝐶)))
 
Theoremdipassr2 28630 "Associative" law for inner product. Conjugate version of dipassr 28629. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋)) → (𝐴𝑃((∗‘𝐵)𝑆𝐶)) = (𝐵 · (𝐴𝑃𝐶)))
 
Theoremdipsubdir 28631 Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶)))
 
Theoremdipsubdi 28632 Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶)))
 
Theorempythi 28633 The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋       ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
 
Theoremsiilem1 28634 Lemma for sii 28637. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝑀 = ( −𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝐶 ∈ ℂ    &   (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ    &   0 ≤ (𝐶 · (𝐴𝑃𝐵))       ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
 
Theoremsiilem2 28635 Lemma for sii 28637. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋    &   𝑀 = ( −𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)       ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
 
Theoremsiii 28636 Inference from sii 28637. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐴𝑋    &   𝐵𝑋       (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))
 
Theoremsii 28637 Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also theorems bcseqi 28903, bcsiALT 28962, bcsiHIL 28963, csbren 24003. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD       ((𝐴𝑋𝐵𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
 
Theoremipblnfi 28638* A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to . (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD    &   𝐶 = ⟨⟨ + , · ⟩, abs⟩    &   𝐵 = (𝑈 BLnOp 𝐶)    &   𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))       (𝐴𝑋𝐹𝐵)
 
Theoremip2eqi 28639* Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD       ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
 
Theoremphoeqi 28640* A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD       ((𝑆:𝑌𝑋𝑇:𝑌𝑋) → (∀𝑥𝑋𝑦𝑌 (𝑥𝑃(𝑆𝑦)) = (𝑥𝑃(𝑇𝑦)) ↔ 𝑆 = 𝑇))
 
Theoremajmoi 28641* Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑈 ∈ CPreHilOLD       ∃*𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))
 
Theoremajfuni 28642 The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝐴 = (𝑈adj𝑊)    &   𝑈 ∈ CPreHilOLD    &   𝑊 ∈ NrmCVec       Fun 𝐴
 
Theoremajfun 28643 The adjoint function is a function. This is not immediately apparent from df-aj 28533 but results from the uniqueness shown by ajmoi 28641. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
𝐴 = (𝑈adj𝑊)       ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → Fun 𝐴)
 
Theoremajval 28644* Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   𝑃 = (·𝑖OLD𝑈)    &   𝑄 = (·𝑖OLD𝑊)    &   𝐴 = (𝑈adj𝑊)       ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
 
18.6  Complex Banach spaces
 
18.6.1  Definition and basic properties
 
Syntaxccbn 28645 Extend class notation with the class of all complex Banach spaces.
class CBan
 
Definitiondf-cbn 28646 Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006.) Use df-bn 23940 instead. (New usage is discouraged.)
CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
 
Theoremiscbn 28647 A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 23942 instead. (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)       (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
 
Theoremcbncms 28648 The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 23951 (or preferably bncms 23948) instead. (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)       (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
 
Theorembnnv 28649 Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 23944 instead. (New usage is discouraged.)
(𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
 
Theorembnrel 28650 The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Rel CBan
 
Theorembnsscmcl 28651 A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝐻 = (SubSp‘𝑈)    &   𝑌 = (BaseSet‘𝑊)       ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))
 
18.6.2  Examples of complex Banach spaces
 
Theoremcnbn 28652 The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, abs⟩       𝑈 ∈ CBan
 
18.6.3  Uniform Boundedness Theorem
 
Theoremubthlem1 28653* Lemma for ubth 28656. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 23934, for some 𝑛 the set 𝐴𝑛 has an interior, meaning that there is a closed ball {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑊)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑈 ∈ CBan    &   𝑊 ∈ NrmCVec    &   (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))    &   (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)    &   𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})       (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
 
Theoremubthlem2 28654* Lemma for ubth 28656. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴𝐾, for any 𝑥𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥𝐵(𝑃, 𝑅) and 𝑃𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑊)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑈 ∈ CBan    &   𝑊 ∈ NrmCVec    &   (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))    &   (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)    &   𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝑃𝑋)    &   (𝜑𝑅 ∈ ℝ+)    &   (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))       (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
 
Theoremubthlem3 28655* Lemma for ubth 28656. Prove the reverse implication, using nmblolbi 28583. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑊)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑈 ∈ CBan    &   𝑊 ∈ NrmCVec    &   (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))       (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
 
Theoremubth 28656* Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑁 = (normCV𝑊)    &   𝑀 = (𝑈 normOpOLD 𝑊)       ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 (𝑀𝑡) ≤ 𝑑))
 
18.6.4  Minimizing Vector Theorem
 
Theoremminvecolem1 28657* Lemma for minveco 28667. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))       (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
 
Theoremminvecolem2 28658* Lemma for minveco 28667. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑𝐾𝑌)    &   (𝜑𝐿𝑌)    &   (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))    &   (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))       (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
 
Theoremminvecolem3 28659* Lemma for minveco 28667. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   (𝜑𝐹:ℕ⟶𝑌)    &   ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))       (𝜑𝐹 ∈ (Cau‘𝐷))
 
Theoremminvecolem4a 28660* Lemma for minveco 28667. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   (𝜑𝐹:ℕ⟶𝑌)    &   ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))       (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
 
Theoremminvecolem4b 28661* Lemma for minveco 28667. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   (𝜑𝐹:ℕ⟶𝑌)    &   ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))       (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
 
Theoremminvecolem4c 28662* Lemma for minveco 28667. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   (𝜑𝐹:ℕ⟶𝑌)    &   ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))       (𝜑𝑆 ∈ ℝ)
 
Theoremminvecolem4 28663* Lemma for minveco 28667. The convergent point of the cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )    &   (𝜑𝐹:ℕ⟶𝑌)    &   ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))    &   𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))       (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
 
Theoremminvecolem5 28664* Lemma for minveco 28667. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 9846. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )       (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
 
Theoremminvecolem6 28665* Lemma for minveco 28667. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )       ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
 
Theoremminvecolem7 28666* Lemma for minveco 28667. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)    &   𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)    &   𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))    &   𝑆 = inf(𝑅, ℝ, < )       (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
 
Theoremminveco 28667* Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)    &   𝑌 = (BaseSet‘𝑊)    &   (𝜑𝑈 ∈ CPreHilOLD)    &   (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))    &   (𝜑𝐴𝑋)       (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
 
18.7  Complex Hilbert spaces
 
18.7.1  Definition and basic properties
 
Syntaxchlo 28668 Extend class notation with the class of all complex Hilbert spaces.
class CHilOLD
 
Definitiondf-hlo 28669 Define the class of all complex Hilbert spaces. A Hilbert space is a Banach space which is also an inner product space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
CHilOLD = (CBan ∩ CPreHilOLD)
 
Theoremishlo 28670 The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
(𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
 
Theoremhlobn 28671 Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
(𝑈 ∈ CHilOLD𝑈 ∈ CBan)
 
Theoremhlph 28672 Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.)
(𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
 
Theoremhlrel 28673 The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Rel CHilOLD
 
Theoremhlnv 28674 Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
(𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
 
Theoremhlnvi 28675 Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
𝑈 ∈ CHilOLD       𝑈 ∈ NrmCVec
 
Theoremhlvc 28676 Every complex Hilbert space is a complex vector space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑊 = (1st𝑈)       (𝑈 ∈ CHilOLD𝑊 ∈ CVecOLD)
 
Theoremhlcmet 28677 The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)       (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))
 
Theoremhlmet 28678 The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐷 = (IndMet‘𝑈)       (𝑈 ∈ CHilOLD𝐷 ∈ (Met‘𝑋))
 
Theoremhlpar2 28679 The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑀 = ( −𝑣𝑈)    &   𝑁 = (normCV𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
 
Theoremhlpar 28680 The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑁 = (normCV𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
 
18.7.2  Standard axioms for a complex Hilbert space
 
Theoremhlex 28681 The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)       𝑋 ∈ V
 
Theoremhladdf 28682 Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)       (𝑈 ∈ CHilOLD𝐺:(𝑋 × 𝑋)⟶𝑋)
 
Theoremhlcom 28683 Hilbert space vector addition is commutative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
 
Theoremhlass 28684 Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)       ((𝑈 ∈ CHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
 
Theoremhl0cl 28685 The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑍 = (0vec𝑈)       (𝑈 ∈ CHilOLD𝑍𝑋)
 
Theoremhladdid 28686 Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑍 = (0vec𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
 
Theoremhlmulf 28687 Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)       (𝑈 ∈ CHilOLD𝑆:(ℂ × 𝑋)⟶𝑋)
 
Theoremhlmulid 28688 Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
 
Theoremhlmulass 28689 Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)       ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
 
Theoremhldi 28690 Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)       ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
 
Theoremhldir 28691 Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)       ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
 
Theoremhlmul0 28692 Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑍 = (0vec𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋) → (0𝑆𝐴) = 𝑍)
 
Theoremhlipf 28693 Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)       (𝑈 ∈ CHilOLD𝑃:(𝑋 × 𝑋)⟶ℂ)
 
Theoremhlipcj 28694 Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (∗‘(𝐵𝑃𝐴)))
 
Theoremhlipdir 28695 Distributive law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝐺 = ( +𝑣𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
 
Theoremhlipass 28696 Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑆 = ( ·𝑠OLD𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))
 
Theoremhlipgt0 28697 The inner product of a Hilbert space vector by itself is positive. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑍 = (0vec𝑈)    &   𝑃 = (·𝑖OLD𝑈)       ((𝑈 ∈ CHilOLD𝐴𝑋𝐴𝑍) → 0 < (𝐴𝑃𝐴))
 
Theoremhlcompl 28698 Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
𝐷 = (IndMet‘𝑈)    &   𝐽 = (MetOpen‘𝐷)       ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))
 
18.7.3  Examples of complex Hilbert spaces
 
Theoremcnchl 28699 The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
𝑈 = ⟨⟨ + , · ⟩, abs⟩       𝑈 ∈ CHilOLD
 
18.7.4  Hellinger-Toeplitz Theorem
 
Theoremhtthlem 28700* Lemma for htth 28701. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = ⟨𝑤𝑇(𝑧)⟩ = ⟨𝑇(𝑤) ∣ 𝑧 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 28638, so by the Uniform Boundedness theorem ubth 28656, there is a uniform bound 𝑦 on 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then 𝑇(𝑥) ∣ ↑2 = ⟨𝑇(𝑥) ∣ 𝑇(𝑥)⟩ = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦𝑇(𝑥) ∣, so 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
𝑋 = (BaseSet‘𝑈)    &   𝑃 = (·𝑖OLD𝑈)    &   𝐿 = (𝑈 LnOp 𝑈)    &   𝐵 = (𝑈 BLnOp 𝑈)    &   𝑁 = (normCV𝑈)    &   𝑈 ∈ CHilOLD    &   𝑊 = ⟨⟨ + , · ⟩, abs⟩    &   (𝜑𝑇𝐿)    &   (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))    &   𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))    &   𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})       (𝜑𝑇𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >