MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengv Structured version   Visualization version   GIF version

Theorem eengv 28226
Description: The value of the Euclidean geometry for dimension 𝑁. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengv (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
Distinct variable group:   π‘₯,𝑖,𝑦,𝑧,𝑁

Proof of Theorem eengv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . 5 (𝑛 = 𝑁 β†’ (π”Όβ€˜π‘›) = (π”Όβ€˜π‘))
21opeq2d 4879 . . . 4 (𝑛 = 𝑁 β†’ ⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩ = ⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩)
31adantr 481 . . . . . 6 ((𝑛 = 𝑁 ∧ π‘₯ ∈ (π”Όβ€˜π‘›)) β†’ (π”Όβ€˜π‘›) = (π”Όβ€˜π‘))
4 simpl 483 . . . . . . . 8 ((𝑛 = 𝑁 ∧ (π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ (π”Όβ€˜π‘›))) β†’ 𝑛 = 𝑁)
54oveq2d 7421 . . . . . . 7 ((𝑛 = 𝑁 ∧ (π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ (π”Όβ€˜π‘›))) β†’ (1...𝑛) = (1...𝑁))
65sumeq1d 15643 . . . . . 6 ((𝑛 = 𝑁 ∧ (π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ (π”Όβ€˜π‘›))) β†’ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))
71, 3, 6mpoeq123dva 7479 . . . . 5 (𝑛 = 𝑁 β†’ (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)) = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)))
87opeq2d 4879 . . . 4 (𝑛 = 𝑁 β†’ ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ = ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩)
92, 8preq12d 4744 . . 3 (𝑛 = 𝑁 β†’ {⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} = {⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩})
101adantr 481 . . . . . . 7 ((𝑛 = 𝑁 ∧ (π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ (π”Όβ€˜π‘›))) β†’ (π”Όβ€˜π‘›) = (π”Όβ€˜π‘))
1110rabeqdv 3447 . . . . . 6 ((𝑛 = 𝑁 ∧ (π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ (π”Όβ€˜π‘›))) β†’ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©} = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})
121, 3, 11mpoeq123dva 7479 . . . . 5 (𝑛 = 𝑁 β†’ (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}))
1312opeq2d 4879 . . . 4 (𝑛 = 𝑁 β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ = ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩)
143difeq1d 4120 . . . . . 6 ((𝑛 = 𝑁 ∧ π‘₯ ∈ (π”Όβ€˜π‘›)) β†’ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) = ((π”Όβ€˜π‘) βˆ– {π‘₯}))
151rabeqdv 3447 . . . . . . 7 (𝑛 = 𝑁 β†’ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)} = {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})
1615adantr 481 . . . . . 6 ((𝑛 = 𝑁 ∧ (π‘₯ ∈ (π”Όβ€˜π‘›) ∧ 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}))) β†’ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)} = {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})
171, 14, 16mpoeq123dva 7479 . . . . 5 (𝑛 = 𝑁 β†’ (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)}) = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)}))
1817opeq2d 4879 . . . 4 (𝑛 = 𝑁 β†’ ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩ = ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩)
1913, 18preq12d 4744 . . 3 (𝑛 = 𝑁 β†’ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩} = {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩})
209, 19uneq12d 4163 . 2 (𝑛 = 𝑁 β†’ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
21 df-eeng 28225 . 2 EEG = (𝑛 ∈ β„• ↦ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘›)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ Σ𝑖 ∈ (1...𝑛)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ (π”Όβ€˜π‘›) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘›), 𝑦 ∈ ((π”Όβ€˜π‘›) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘›) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
22 prex 5431 . . 3 {⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} ∈ V
23 prex 5431 . . 3 {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩} ∈ V
2422, 23unex 7729 . 2 ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}) ∈ V
2520, 21, 24fvmpt 6995 1 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ w3o 1086   = wceq 1541   ∈ wcel 2106  {crab 3432   βˆ– cdif 3944   βˆͺ cun 3945  {csn 4627  {cpr 4629  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1c1 11107   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  ...cfz 13480  β†‘cexp 14023  Ξ£csu 15628  ndxcnx 17122  Basecbs 17140  distcds 17202  Itvcitv 27673  LineGclng 27674  π”Όcee 28135   Btwn cbtwn 28136  EEGceeng 28224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-iota 6492  df-fun 6542  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seq 13963  df-sum 15629  df-eeng 28225
This theorem is referenced by:  eengstr  28227  eengbas  28228  ebtwntg  28229  ecgrtg  28230  elntg  28231
  Copyright terms: Public domain W3C validator