| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . . 5
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) | 
| 2 | 1 | opeq2d 4879 | . . . 4
⊢ (𝑛 = 𝑁 → 〈(Base‘ndx),
(𝔼‘𝑛)〉 =
〈(Base‘ndx), (𝔼‘𝑁)〉) | 
| 3 | 1 | adantr 480 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ (𝔼‘𝑛)) → (𝔼‘𝑛) = (𝔼‘𝑁)) | 
| 4 |  | simpl 482 | . . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛))) → 𝑛 = 𝑁) | 
| 5 | 4 | oveq2d 7448 | . . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛))) → (1...𝑛) = (1...𝑁)) | 
| 6 | 5 | sumeq1d 15737 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛))) → Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) | 
| 7 | 1, 3, 6 | mpoeq123dva 7508 | . . . . 5
⊢ (𝑛 = 𝑁 → (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))) | 
| 8 | 7 | opeq2d 4879 | . . . 4
⊢ (𝑛 = 𝑁 → 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 = 〈(dist‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉) | 
| 9 | 2, 8 | preq12d 4740 | . . 3
⊢ (𝑛 = 𝑁 → {〈(Base‘ndx),
(𝔼‘𝑛)〉,
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} = {〈(Base‘ndx),
(𝔼‘𝑁)〉,
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉}) | 
| 10 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛))) → (𝔼‘𝑛) = (𝔼‘𝑁)) | 
| 11 | 10 | rabeqdv 3451 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛))) → {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉} = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) | 
| 12 | 1, 3, 11 | mpoeq123dva 7508 | . . . . 5
⊢ (𝑛 = 𝑁 → (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})) | 
| 13 | 12 | opeq2d 4879 | . . . 4
⊢ (𝑛 = 𝑁 → 〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 = 〈(Itv‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉) | 
| 14 | 3 | difeq1d 4124 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ (𝔼‘𝑛)) → ((𝔼‘𝑛) ∖ {𝑥}) = ((𝔼‘𝑁) ∖ {𝑥})) | 
| 15 | 1 | rabeqdv 3451 | . . . . . . 7
⊢ (𝑛 = 𝑁 → {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)} = {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) | 
| 16 | 15 | adantr 480 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ (𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}))) → {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)} = {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) | 
| 17 | 1, 14, 16 | mpoeq123dva 7508 | . . . . 5
⊢ (𝑛 = 𝑁 → (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)}) = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})) | 
| 18 | 17 | opeq2d 4879 | . . . 4
⊢ (𝑛 = 𝑁 → 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉 = 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉) | 
| 19 | 13, 18 | preq12d 4740 | . . 3
⊢ (𝑛 = 𝑁 → {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} = {〈(Itv‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) | 
| 20 | 9, 19 | uneq12d 4168 | . 2
⊢ (𝑛 = 𝑁 → ({〈(Base‘ndx),
(𝔼‘𝑛)〉,
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) = ({〈(Base‘ndx),
(𝔼‘𝑁)〉,
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | 
| 21 |  | df-eeng 28994 | . 2
⊢ EEG =
(𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | 
| 22 |  | prex 5436 | . . 3
⊢
{〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∈ V | 
| 23 |  | prex 5436 | . . 3
⊢
{〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} ∈ V | 
| 24 | 22, 23 | unex 7765 | . 2
⊢
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) ∈ V | 
| 25 | 20, 21, 24 | fvmpt 7015 | 1
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) =
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |