Detailed syntax breakdown of Definition df-elwise
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | celwise 37080 | . 2
class
elwise | 
| 2 |  | vo | . . 3
setvar 𝑜 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vx | . . . 4
setvar 𝑥 | 
| 5 |  | vy | . . . 4
setvar 𝑦 | 
| 6 |  | vz | . . . . . . . . 9
setvar 𝑧 | 
| 7 | 6 | cv 1539 | . . . . . . . 8
class 𝑧 | 
| 8 |  | vu | . . . . . . . . . 10
setvar 𝑢 | 
| 9 | 8 | cv 1539 | . . . . . . . . 9
class 𝑢 | 
| 10 |  | vv | . . . . . . . . . 10
setvar 𝑣 | 
| 11 | 10 | cv 1539 | . . . . . . . . 9
class 𝑣 | 
| 12 | 2 | cv 1539 | . . . . . . . . 9
class 𝑜 | 
| 13 | 9, 11, 12 | co 7431 | . . . . . . . 8
class (𝑢𝑜𝑣) | 
| 14 | 7, 13 | wceq 1540 | . . . . . . 7
wff 𝑧 = (𝑢𝑜𝑣) | 
| 15 | 5 | cv 1539 | . . . . . . 7
class 𝑦 | 
| 16 | 14, 10, 15 | wrex 3070 | . . . . . 6
wff
∃𝑣 ∈
𝑦 𝑧 = (𝑢𝑜𝑣) | 
| 17 | 4 | cv 1539 | . . . . . 6
class 𝑥 | 
| 18 | 16, 8, 17 | wrex 3070 | . . . . 5
wff
∃𝑢 ∈
𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣) | 
| 19 | 18, 6 | cab 2714 | . . . 4
class {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)} | 
| 20 | 4, 5, 3, 3, 19 | cmpo 7433 | . . 3
class (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)}) | 
| 21 | 2, 3, 20 | cmpt 5225 | . 2
class (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) | 
| 22 | 1, 21 | wceq 1540 | 1
wff elwise =
(𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) |