Detailed syntax breakdown of Definition df-elwise
Step | Hyp | Ref
| Expression |
1 | | celwise 35229 |
. 2
class
elwise |
2 | | vo |
. . 3
setvar 𝑜 |
3 | | cvv 3430 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | vy |
. . . 4
setvar 𝑦 |
6 | | vz |
. . . . . . . . 9
setvar 𝑧 |
7 | 6 | cv 1540 |
. . . . . . . 8
class 𝑧 |
8 | | vu |
. . . . . . . . . 10
setvar 𝑢 |
9 | 8 | cv 1540 |
. . . . . . . . 9
class 𝑢 |
10 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
11 | 10 | cv 1540 |
. . . . . . . . 9
class 𝑣 |
12 | 2 | cv 1540 |
. . . . . . . . 9
class 𝑜 |
13 | 9, 11, 12 | co 7268 |
. . . . . . . 8
class (𝑢𝑜𝑣) |
14 | 7, 13 | wceq 1541 |
. . . . . . 7
wff 𝑧 = (𝑢𝑜𝑣) |
15 | 5 | cv 1540 |
. . . . . . 7
class 𝑦 |
16 | 14, 10, 15 | wrex 3066 |
. . . . . 6
wff
∃𝑣 ∈
𝑦 𝑧 = (𝑢𝑜𝑣) |
17 | 4 | cv 1540 |
. . . . . 6
class 𝑥 |
18 | 16, 8, 17 | wrex 3066 |
. . . . 5
wff
∃𝑢 ∈
𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣) |
19 | 18, 6 | cab 2716 |
. . . 4
class {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)} |
20 | 4, 5, 3, 3, 19 | cmpo 7270 |
. . 3
class (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)}) |
21 | 2, 3, 20 | cmpt 5161 |
. 2
class (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) |
22 | 1, 21 | wceq 1541 |
1
wff elwise =
(𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) |