MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Structured version   Visualization version   GIF version

Theorem axaddf 11144
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 11150. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 11193. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf + :(ℂ × ℂ)⟶ℂ

Proof of Theorem axaddf
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3704 . . . . . . . . 9 ∃*𝑧 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩
21mosubop 5512 . . . . . . . 8 ∃*𝑧𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)
32mosubop 5512 . . . . . . 7 ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))
4 anass 467 . . . . . . . . . . 11 (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
542exbii 1849 . . . . . . . . . 10 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
6 19.42vv 1959 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
75, 6bitri 274 . . . . . . . . 9 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
872exbii 1849 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
98mobii 2540 . . . . . . 7 (∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
103, 9mpbir 230 . . . . . 6 ∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)
1110moani 2545 . . . . 5 ∃*𝑧((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))
1211funoprab 7534 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
13 df-add 11125 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1413funeqi 6570 . . . 4 (Fun + ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))})
1512, 14mpbir 230 . . 3 Fun +
1613dmeqi 5905 . . . . 5 dom + = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
17 dmoprabss 7515 . . . . 5 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} ⊆ (ℂ × ℂ)
1816, 17eqsstri 4017 . . . 4 dom + ⊆ (ℂ × ℂ)
19 0ncn 11132 . . . . 5 ¬ ∅ ∈ ℂ
20 df-c 11120 . . . . . . 7 ℂ = (R × R)
21 oveq1 7420 . . . . . . . 8 (⟨𝑧, 𝑤⟩ = 𝑥 → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) = (𝑥 + ⟨𝑣, 𝑢⟩))
2221eleq1d 2816 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝑥 → ((⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 + ⟨𝑣, 𝑢⟩) ∈ (R × R)))
23 oveq2 7421 . . . . . . . 8 (⟨𝑣, 𝑢⟩ = 𝑦 → (𝑥 + ⟨𝑣, 𝑢⟩) = (𝑥 + 𝑦))
2423eleq1d 2816 . . . . . . 7 (⟨𝑣, 𝑢⟩ = 𝑦 → ((𝑥 + ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 + 𝑦) ∈ (R × R)))
25 addcnsr 11134 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) = ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩)
26 addclsr 11082 . . . . . . . . . . 11 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
27 addclsr 11082 . . . . . . . . . . 11 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
2826, 27anim12i 611 . . . . . . . . . 10 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
2928an4s 656 . . . . . . . . 9 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
30 opelxpi 5714 . . . . . . . . 9 (((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R) → ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩ ∈ (R × R))
3129, 30syl 17 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩ ∈ (R × R))
3225, 31eqeltrd 2831 . . . . . . 7 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) ∈ (R × R))
3320, 22, 24, 322optocl 5772 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ (R × R))
3433, 20eleqtrrdi 2842 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3519, 34oprssdm 7592 . . . 4 (ℂ × ℂ) ⊆ dom +
3618, 35eqssi 3999 . . 3 dom + = (ℂ × ℂ)
37 df-fn 6547 . . 3 ( + Fn (ℂ × ℂ) ↔ (Fun + ∧ dom + = (ℂ × ℂ)))
3815, 36, 37mpbir2an 707 . 2 + Fn (ℂ × ℂ)
3934rgen2 3195 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 + 𝑦) ∈ ℂ
40 ffnov 7539 . 2 ( + :(ℂ × ℂ)⟶ℂ ↔ ( + Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 + 𝑦) ∈ ℂ))
4138, 39, 40mpbir2an 707 1 + :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wex 1779  wcel 2104  ∃*wmo 2530  wral 3059  cop 4635   × cxp 5675  dom cdm 5677  Fun wfun 6538   Fn wfn 6539  wf 6540  (class class class)co 7413  {coprab 7414  Rcnr 10864   +R cplr 10868  cc 11112   + caddc 11117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-inf2 9640
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-omul 8475  df-er 8707  df-ec 8709  df-qs 8713  df-ni 10871  df-pli 10872  df-mi 10873  df-lti 10874  df-plpq 10907  df-mpq 10908  df-ltpq 10909  df-enq 10910  df-nq 10911  df-erq 10912  df-plq 10913  df-mq 10914  df-1nq 10915  df-rq 10916  df-ltnq 10917  df-np 10980  df-plp 10982  df-ltp 10984  df-enr 11054  df-nr 11055  df-plr 11056  df-c 11120  df-add 11125
This theorem is referenced by:  axaddcl  11150
  Copyright terms: Public domain W3C validator