Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Structured version   Visualization version   GIF version

 Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 10571. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 10614. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf + :(ℂ × ℂ)⟶ℂ

Proof of Theorem axaddf
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3684 . . . . . . . . 9 ∃*𝑧 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩
21mosubop 5388 . . . . . . . 8 ∃*𝑧𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)
32mosubop 5388 . . . . . . 7 ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))
4 anass 472 . . . . . . . . . . 11 (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
542exbii 1850 . . . . . . . . . 10 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
6 19.42vv 1959 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
75, 6bitri 278 . . . . . . . . 9 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
872exbii 1850 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
98mobii 2632 . . . . . . 7 (∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩) ↔ ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
103, 9mpbir 234 . . . . . 6 ∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)
1110moani 2638 . . . . 5 ∃*𝑧((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))
1211funoprab 7267 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
13 df-add 10546 . . . . 5 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1413funeqi 6364 . . . 4 (Fun + ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))})
1512, 14mpbir 234 . . 3 Fun +
1613dmeqi 5760 . . . . 5 dom + = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
17 dmoprabss 7249 . . . . 5 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} ⊆ (ℂ × ℂ)
1816, 17eqsstri 3987 . . . 4 dom + ⊆ (ℂ × ℂ)
19 0ncn 10553 . . . . 5 ¬ ∅ ∈ ℂ
20 df-c 10541 . . . . . . 7 ℂ = (R × R)
21 oveq1 7156 . . . . . . . 8 (⟨𝑧, 𝑤⟩ = 𝑥 → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) = (𝑥 + ⟨𝑣, 𝑢⟩))
2221eleq1d 2900 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝑥 → ((⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 + ⟨𝑣, 𝑢⟩) ∈ (R × R)))
23 oveq2 7157 . . . . . . . 8 (⟨𝑣, 𝑢⟩ = 𝑦 → (𝑥 + ⟨𝑣, 𝑢⟩) = (𝑥 + 𝑦))
2423eleq1d 2900 . . . . . . 7 (⟨𝑣, 𝑢⟩ = 𝑦 → ((𝑥 + ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 + 𝑦) ∈ (R × R)))
25 addcnsr 10555 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) = ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩)
26 addclsr 10503 . . . . . . . . . . 11 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
27 addclsr 10503 . . . . . . . . . . 11 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
2826, 27anim12i 615 . . . . . . . . . 10 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
2928an4s 659 . . . . . . . . 9 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
30 opelxpi 5579 . . . . . . . . 9 (((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R) → ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩ ∈ (R × R))
3129, 30syl 17 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩ ∈ (R × R))
3225, 31eqeltrd 2916 . . . . . . 7 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑣, 𝑢⟩) ∈ (R × R))
3320, 22, 24, 322optocl 5633 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ (R × R))
3433, 20eleqtrrdi 2927 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3519, 34oprssdm 7323 . . . 4 (ℂ × ℂ) ⊆ dom +
3618, 35eqssi 3969 . . 3 dom + = (ℂ × ℂ)
37 df-fn 6346 . . 3 ( + Fn (ℂ × ℂ) ↔ (Fun + ∧ dom + = (ℂ × ℂ)))
3815, 36, 37mpbir2an 710 . 2 + Fn (ℂ × ℂ)
3934rgen2 3198 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 + 𝑦) ∈ ℂ
40 ffnov 7271 . 2 ( + :(ℂ × ℂ)⟶ℂ ↔ ( + Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 + 𝑦) ∈ ℂ))
4138, 39, 40mpbir2an 710 1 + :(ℂ × ℂ)⟶ℂ
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2115  ∃*wmo 2622  ∀wral 3133  ⟨cop 4556   × cxp 5540  dom cdm 5542  Fun wfun 6337   Fn wfn 6338  ⟶wf 6339  (class class class)co 7149  {coprab 7150  Rcnr 10285   +R cplr 10289  ℂcc 10533   + caddc 10538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-omul 8103  df-er 8285  df-ec 8287  df-qs 8291  df-ni 10292  df-pli 10293  df-mi 10294  df-lti 10295  df-plpq 10328  df-mpq 10329  df-ltpq 10330  df-enq 10331  df-nq 10332  df-erq 10333  df-plq 10334  df-mq 10335  df-1nq 10336  df-rq 10337  df-ltnq 10338  df-np 10401  df-plp 10403  df-ltp 10405  df-enr 10475  df-nr 10476  df-plr 10477  df-c 10541  df-add 10546 This theorem is referenced by:  axaddcl  10571
 Copyright terms: Public domain W3C validator