MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-eqlg Structured version   Visualization version   GIF version

Definition df-eqlg 27208
Description: Define the class of equilateral triangles. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Assertion
Ref Expression
df-eqlg eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
Distinct variable group:   𝑥,𝑔

Detailed syntax breakdown of Definition df-eqlg
StepHypRef Expression
1 ceqlg 27207 . 2 class eqltrG
2 vg . . 3 setvar 𝑔
3 cvv 3430 . . 3 class V
4 vx . . . . . 6 setvar 𝑥
54cv 1540 . . . . 5 class 𝑥
6 c1 10856 . . . . . . 7 class 1
76, 5cfv 6430 . . . . . 6 class (𝑥‘1)
8 c2 12011 . . . . . . 7 class 2
98, 5cfv 6430 . . . . . 6 class (𝑥‘2)
10 cc0 10855 . . . . . . 7 class 0
1110, 5cfv 6430 . . . . . 6 class (𝑥‘0)
127, 9, 11cs3 14536 . . . . 5 class ⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩
132cv 1540 . . . . . 6 class 𝑔
14 ccgrg 26852 . . . . . 6 class cgrG
1513, 14cfv 6430 . . . . 5 class (cgrG‘𝑔)
165, 12, 15wbr 5078 . . . 4 wff 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩
17 cbs 16893 . . . . . 6 class Base
1813, 17cfv 6430 . . . . 5 class (Base‘𝑔)
19 c3 12012 . . . . . 6 class 3
20 cfzo 13364 . . . . . 6 class ..^
2110, 19, 20co 7268 . . . . 5 class (0..^3)
22 cmap 8589 . . . . 5 class m
2318, 21, 22co 7268 . . . 4 class ((Base‘𝑔) ↑m (0..^3))
2416, 4, 23crab 3069 . . 3 class {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩}
252, 3, 24cmpt 5161 . 2 class (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
261, 25wceq 1541 1 wff eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
Colors of variables: wff setvar class
This definition is referenced by:  iseqlg  27209
  Copyright terms: Public domain W3C validator