Detailed syntax breakdown of Definition df-eqlg
| Step | Hyp | Ref
| Expression |
| 1 | | ceqlg 28873 |
. 2
class
eqltrG |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . . . 6
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . 5
class 𝑥 |
| 6 | | c1 11156 |
. . . . . . 7
class
1 |
| 7 | 6, 5 | cfv 6561 |
. . . . . 6
class (𝑥‘1) |
| 8 | | c2 12321 |
. . . . . . 7
class
2 |
| 9 | 8, 5 | cfv 6561 |
. . . . . 6
class (𝑥‘2) |
| 10 | | cc0 11155 |
. . . . . . 7
class
0 |
| 11 | 10, 5 | cfv 6561 |
. . . . . 6
class (𝑥‘0) |
| 12 | 7, 9, 11 | cs3 14881 |
. . . . 5
class
〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉 |
| 13 | 2 | cv 1539 |
. . . . . 6
class 𝑔 |
| 14 | | ccgrg 28518 |
. . . . . 6
class
cgrG |
| 15 | 13, 14 | cfv 6561 |
. . . . 5
class
(cgrG‘𝑔) |
| 16 | 5, 12, 15 | wbr 5143 |
. . . 4
wff 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉 |
| 17 | | cbs 17247 |
. . . . . 6
class
Base |
| 18 | 13, 17 | cfv 6561 |
. . . . 5
class
(Base‘𝑔) |
| 19 | | c3 12322 |
. . . . . 6
class
3 |
| 20 | | cfzo 13694 |
. . . . . 6
class
..^ |
| 21 | 10, 19, 20 | co 7431 |
. . . . 5
class
(0..^3) |
| 22 | | cmap 8866 |
. . . . 5
class
↑m |
| 23 | 18, 21, 22 | co 7431 |
. . . 4
class
((Base‘𝑔)
↑m (0..^3)) |
| 24 | 16, 4, 23 | crab 3436 |
. . 3
class {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3))
∣ 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉} |
| 25 | 2, 3, 24 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3))
∣ 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉}) |
| 26 | 1, 25 | wceq 1540 |
1
wff eqltrG =
(𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3))
∣ 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉}) |