Step | Hyp | Ref
| Expression |
1 | | iseqlg.g |
. . . 4
β’ (π β πΊ β TarskiG) |
2 | | elex 3492 |
. . . 4
β’ (πΊ β TarskiG β πΊ β V) |
3 | | fveq2 6888 |
. . . . . . . 8
β’ (π = πΊ β (Baseβπ) = (BaseβπΊ)) |
4 | | iseqlg.p |
. . . . . . . 8
β’ π = (BaseβπΊ) |
5 | 3, 4 | eqtr4di 2790 |
. . . . . . 7
β’ (π = πΊ β (Baseβπ) = π) |
6 | 5 | oveq1d 7420 |
. . . . . 6
β’ (π = πΊ β ((Baseβπ) βm (0..^3)) = (π βm
(0..^3))) |
7 | | fveq2 6888 |
. . . . . . 7
β’ (π = πΊ β (cgrGβπ) = (cgrGβπΊ)) |
8 | 7 | breqd 5158 |
. . . . . 6
β’ (π = πΊ β (π₯(cgrGβπ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ© β π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©)) |
9 | 6, 8 | rabeqbidv 3449 |
. . . . 5
β’ (π = πΊ β {π₯ β ((Baseβπ) βm (0..^3)) β£ π₯(cgrGβπ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©} = {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©}) |
10 | | df-eqlg 28106 |
. . . . 5
β’ eqltrG =
(π β V β¦ {π₯ β ((Baseβπ) βm (0..^3))
β£ π₯(cgrGβπ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©}) |
11 | | ovex 7438 |
. . . . . 6
β’ (π βm (0..^3))
β V |
12 | 11 | rabex 5331 |
. . . . 5
β’ {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©} β
V |
13 | 9, 10, 12 | fvmpt 6995 |
. . . 4
β’ (πΊ β V β
(eqltrGβπΊ) = {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©}) |
14 | 1, 2, 13 | 3syl 18 |
. . 3
β’ (π β (eqltrGβπΊ) = {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©}) |
15 | 14 | eleq2d 2819 |
. 2
β’ (π β (β¨βπ΄π΅πΆββ© β (eqltrGβπΊ) β β¨βπ΄π΅πΆββ© β {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©})) |
16 | | id 22 |
. . . . 5
β’ (π₯ = β¨βπ΄π΅πΆββ© β π₯ = β¨βπ΄π΅πΆββ©) |
17 | | fveq1 6887 |
. . . . . 6
β’ (π₯ = β¨βπ΄π΅πΆββ© β (π₯β1) = (β¨βπ΄π΅πΆββ©β1)) |
18 | | fveq1 6887 |
. . . . . 6
β’ (π₯ = β¨βπ΄π΅πΆββ© β (π₯β2) = (β¨βπ΄π΅πΆββ©β2)) |
19 | | fveq1 6887 |
. . . . . 6
β’ (π₯ = β¨βπ΄π΅πΆββ© β (π₯β0) = (β¨βπ΄π΅πΆββ©β0)) |
20 | 17, 18, 19 | s3eqd 14811 |
. . . . 5
β’ (π₯ = β¨βπ΄π΅πΆββ© β β¨β(π₯β1)(π₯β2)(π₯β0)ββ© =
β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ©) |
21 | 16, 20 | breq12d 5160 |
. . . 4
β’ (π₯ = β¨βπ΄π΅πΆββ© β (π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ© β
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ©)) |
22 | 21 | elrab 3682 |
. . 3
β’
(β¨βπ΄π΅πΆββ© β {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©} β
(β¨βπ΄π΅πΆββ© β (π βm (0..^3)) β§
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ©)) |
23 | 22 | a1i 11 |
. 2
β’ (π β (β¨βπ΄π΅πΆββ© β {π₯ β (π βm (0..^3)) β£ π₯(cgrGβπΊ)β¨β(π₯β1)(π₯β2)(π₯β0)ββ©} β
(β¨βπ΄π΅πΆββ© β (π βm (0..^3)) β§
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ©))) |
24 | | iseqlg.a |
. . . . . 6
β’ (π β π΄ β π) |
25 | | iseqlg.b |
. . . . . 6
β’ (π β π΅ β π) |
26 | | iseqlg.c |
. . . . . 6
β’ (π β πΆ β π) |
27 | 24, 25, 26 | s3cld 14819 |
. . . . 5
β’ (π β β¨βπ΄π΅πΆββ© β Word π) |
28 | | s3len 14841 |
. . . . 5
β’
(β―ββ¨βπ΄π΅πΆββ©) = 3 |
29 | 4 | fvexi 6902 |
. . . . . 6
β’ π β V |
30 | | 3nn0 12486 |
. . . . . 6
β’ 3 β
β0 |
31 | | wrdmap 14492 |
. . . . . 6
β’ ((π β V β§ 3 β
β0) β ((β¨βπ΄π΅πΆββ© β Word π β§ (β―ββ¨βπ΄π΅πΆββ©) = 3) β
β¨βπ΄π΅πΆββ© β (π βm
(0..^3)))) |
32 | 29, 30, 31 | mp2an 690 |
. . . . 5
β’
((β¨βπ΄π΅πΆββ© β Word π β§ (β―ββ¨βπ΄π΅πΆββ©) = 3) β
β¨βπ΄π΅πΆββ© β (π βm
(0..^3))) |
33 | 27, 28, 32 | sylanblc 589 |
. . . 4
β’ (π β β¨βπ΄π΅πΆββ© β (π βm
(0..^3))) |
34 | 33 | biantrurd 533 |
. . 3
β’ (π β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ© β
(β¨βπ΄π΅πΆββ© β (π βm (0..^3)) β§
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ©))) |
35 | | s3fv1 14839 |
. . . . . 6
β’ (π΅ β π β (β¨βπ΄π΅πΆββ©β1) = π΅) |
36 | 25, 35 | syl 17 |
. . . . 5
β’ (π β (β¨βπ΄π΅πΆββ©β1) = π΅) |
37 | | s3fv2 14840 |
. . . . . 6
β’ (πΆ β π β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
38 | 26, 37 | syl 17 |
. . . . 5
β’ (π β (β¨βπ΄π΅πΆββ©β2) = πΆ) |
39 | | s3fv0 14838 |
. . . . . 6
β’ (π΄ β π β (β¨βπ΄π΅πΆββ©β0) = π΄) |
40 | 24, 39 | syl 17 |
. . . . 5
β’ (π β (β¨βπ΄π΅πΆββ©β0) = π΄) |
41 | 36, 38, 40 | s3eqd 14811 |
. . . 4
β’ (π β
β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ© =
β¨βπ΅πΆπ΄ββ©) |
42 | 41 | breq2d 5159 |
. . 3
β’ (π β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ© β
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ΅πΆπ΄ββ©)) |
43 | 34, 42 | bitr3d 280 |
. 2
β’ (π β ((β¨βπ΄π΅πΆββ© β (π βm (0..^3)) β§
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨β(β¨βπ΄π΅πΆββ©β1)(β¨βπ΄π΅πΆββ©β2)(β¨βπ΄π΅πΆββ©β0)ββ©) β
β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ΅πΆπ΄ββ©)) |
44 | 15, 23, 43 | 3bitrd 304 |
1
β’ (π β (β¨βπ΄π΅πΆββ© β (eqltrGβπΊ) β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ΅πΆπ΄ββ©)) |