MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqlg Structured version   Visualization version   GIF version

Theorem iseqlg 28801
Description: Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
iseqlg.p 𝑃 = (Base‘𝐺)
iseqlg.m = (dist‘𝐺)
iseqlg.i 𝐼 = (Itv‘𝐺)
iseqlg.l 𝐿 = (LineG‘𝐺)
iseqlg.g (𝜑𝐺 ∈ TarskiG)
iseqlg.a (𝜑𝐴𝑃)
iseqlg.b (𝜑𝐵𝑃)
iseqlg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
iseqlg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))

Proof of Theorem iseqlg
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqlg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3471 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6861 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 iseqlg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2783 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 7405 . . . . . 6 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
7 fveq2 6861 . . . . . . 7 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
87breqd 5121 . . . . . 6 (𝑔 = 𝐺 → (𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩))
96, 8rabeqbidv 3427 . . . . 5 (𝑔 = 𝐺 → {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
10 df-eqlg 28800 . . . . 5 eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
11 ovex 7423 . . . . . 6 (𝑃m (0..^3)) ∈ V
1211rabex 5297 . . . . 5 {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ∈ V
139, 10, 12fvmpt 6971 . . . 4 (𝐺 ∈ V → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
141, 2, 133syl 18 . . 3 (𝜑 → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
1514eleq2d 2815 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩}))
16 id 22 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → 𝑥 = ⟨“𝐴𝐵𝐶”⟩)
17 fveq1 6860 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
18 fveq1 6860 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
19 fveq1 6860 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
2017, 18, 19s3eqd 14837 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → ⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)
2116, 20breq12d 5123 . . . 4 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2221elrab 3662 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2322a1i 11 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
24 iseqlg.a . . . . . 6 (𝜑𝐴𝑃)
25 iseqlg.b . . . . . 6 (𝜑𝐵𝑃)
26 iseqlg.c . . . . . 6 (𝜑𝐶𝑃)
2724, 25, 26s3cld 14845 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
28 s3len 14867 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
294fvexi 6875 . . . . . 6 𝑃 ∈ V
30 3nn0 12467 . . . . . 6 3 ∈ ℕ0
31 wrdmap 14518 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
3229, 30, 31mp2an 692 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3327, 28, 32sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3433biantrurd 532 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
35 s3fv1 14865 . . . . . 6 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3625, 35syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
37 s3fv2 14866 . . . . . 6 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3826, 37syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
39 s3fv0 14864 . . . . . 6 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4024, 39syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4136, 38, 40s3eqd 14837 . . . 4 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ = ⟨“𝐵𝐶𝐴”⟩)
4241breq2d 5122 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4334, 42bitr3d 281 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4415, 23, 433bitrd 305 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5110  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076  2c2 12248  3c3 12249  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368  cgrGccgrg 28444  eqltrGceqlg 28799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-eqlg 28800
This theorem is referenced by:  iseqlgd  28802
  Copyright terms: Public domain W3C validator