MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqlg Structured version   Visualization version   GIF version

Theorem iseqlg 28890
Description: Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
iseqlg.p 𝑃 = (Base‘𝐺)
iseqlg.m = (dist‘𝐺)
iseqlg.i 𝐼 = (Itv‘𝐺)
iseqlg.l 𝐿 = (LineG‘𝐺)
iseqlg.g (𝜑𝐺 ∈ TarskiG)
iseqlg.a (𝜑𝐴𝑃)
iseqlg.b (𝜑𝐵𝑃)
iseqlg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
iseqlg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))

Proof of Theorem iseqlg
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqlg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3499 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6907 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 iseqlg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2793 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 7446 . . . . . 6 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
7 fveq2 6907 . . . . . . 7 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
87breqd 5159 . . . . . 6 (𝑔 = 𝐺 → (𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩))
96, 8rabeqbidv 3452 . . . . 5 (𝑔 = 𝐺 → {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
10 df-eqlg 28889 . . . . 5 eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
11 ovex 7464 . . . . . 6 (𝑃m (0..^3)) ∈ V
1211rabex 5345 . . . . 5 {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ∈ V
139, 10, 12fvmpt 7016 . . . 4 (𝐺 ∈ V → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
141, 2, 133syl 18 . . 3 (𝜑 → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
1514eleq2d 2825 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩}))
16 id 22 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → 𝑥 = ⟨“𝐴𝐵𝐶”⟩)
17 fveq1 6906 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
18 fveq1 6906 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
19 fveq1 6906 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
2017, 18, 19s3eqd 14900 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → ⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)
2116, 20breq12d 5161 . . . 4 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2221elrab 3695 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2322a1i 11 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
24 iseqlg.a . . . . . 6 (𝜑𝐴𝑃)
25 iseqlg.b . . . . . 6 (𝜑𝐵𝑃)
26 iseqlg.c . . . . . 6 (𝜑𝐶𝑃)
2724, 25, 26s3cld 14908 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
28 s3len 14930 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
294fvexi 6921 . . . . . 6 𝑃 ∈ V
30 3nn0 12542 . . . . . 6 3 ∈ ℕ0
31 wrdmap 14581 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
3229, 30, 31mp2an 692 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3327, 28, 32sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3433biantrurd 532 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
35 s3fv1 14928 . . . . . 6 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3625, 35syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
37 s3fv2 14929 . . . . . 6 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3826, 37syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
39 s3fv0 14927 . . . . . 6 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4024, 39syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4136, 38, 40s3eqd 14900 . . . 4 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ = ⟨“𝐵𝐶𝐴”⟩)
4241breq2d 5160 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4334, 42bitr3d 281 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4415, 23, 433bitrd 305 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478   class class class wbr 5148  cfv 6563  (class class class)co 7431  m cmap 8865  0cc0 11153  1c1 11154  2c2 12319  3c3 12320  0cn0 12524  ..^cfzo 13691  chash 14366  Word cword 14549  ⟨“cs3 14878  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457  cgrGccgrg 28533  eqltrGceqlg 28888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-eqlg 28889
This theorem is referenced by:  iseqlgd  28891
  Copyright terms: Public domain W3C validator