MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqlg Structured version   Visualization version   GIF version

Theorem iseqlg 27132
Description: Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
iseqlg.p 𝑃 = (Base‘𝐺)
iseqlg.m = (dist‘𝐺)
iseqlg.i 𝐼 = (Itv‘𝐺)
iseqlg.l 𝐿 = (LineG‘𝐺)
iseqlg.g (𝜑𝐺 ∈ TarskiG)
iseqlg.a (𝜑𝐴𝑃)
iseqlg.b (𝜑𝐵𝑃)
iseqlg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
iseqlg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))

Proof of Theorem iseqlg
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqlg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3440 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6756 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 iseqlg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2797 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 7270 . . . . . 6 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
7 fveq2 6756 . . . . . . 7 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
87breqd 5081 . . . . . 6 (𝑔 = 𝐺 → (𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩))
96, 8rabeqbidv 3410 . . . . 5 (𝑔 = 𝐺 → {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
10 df-eqlg 27131 . . . . 5 eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
11 ovex 7288 . . . . . 6 (𝑃m (0..^3)) ∈ V
1211rabex 5251 . . . . 5 {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ∈ V
139, 10, 12fvmpt 6857 . . . 4 (𝐺 ∈ V → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
141, 2, 133syl 18 . . 3 (𝜑 → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
1514eleq2d 2824 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩}))
16 id 22 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → 𝑥 = ⟨“𝐴𝐵𝐶”⟩)
17 fveq1 6755 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
18 fveq1 6755 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
19 fveq1 6755 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
2017, 18, 19s3eqd 14505 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → ⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)
2116, 20breq12d 5083 . . . 4 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2221elrab 3617 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2322a1i 11 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
24 iseqlg.a . . . . . 6 (𝜑𝐴𝑃)
25 iseqlg.b . . . . . 6 (𝜑𝐵𝑃)
26 iseqlg.c . . . . . 6 (𝜑𝐶𝑃)
2724, 25, 26s3cld 14513 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
28 s3len 14535 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
294fvexi 6770 . . . . . 6 𝑃 ∈ V
30 3nn0 12181 . . . . . 6 3 ∈ ℕ0
31 wrdmap 14177 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
3229, 30, 31mp2an 688 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3327, 28, 32sylanblc 588 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3433biantrurd 532 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
35 s3fv1 14533 . . . . . 6 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3625, 35syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
37 s3fv2 14534 . . . . . 6 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3826, 37syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
39 s3fv0 14532 . . . . . 6 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4024, 39syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4136, 38, 40s3eqd 14505 . . . 4 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ = ⟨“𝐵𝐶𝐴”⟩)
4241breq2d 5082 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4334, 42bitr3d 280 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4415, 23, 433bitrd 304 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  1c1 10803  2c2 11958  3c3 11959  0cn0 12163  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  cgrGccgrg 26775  eqltrGceqlg 27130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-eqlg 27131
This theorem is referenced by:  iseqlgd  27133
  Copyright terms: Public domain W3C validator