MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqlg Structured version   Visualization version   GIF version

Theorem iseqlg 28770
Description: Property of a triangle being equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
iseqlg.p 𝑃 = (Base‘𝐺)
iseqlg.m = (dist‘𝐺)
iseqlg.i 𝐼 = (Itv‘𝐺)
iseqlg.l 𝐿 = (LineG‘𝐺)
iseqlg.g (𝜑𝐺 ∈ TarskiG)
iseqlg.a (𝜑𝐴𝑃)
iseqlg.b (𝜑𝐵𝑃)
iseqlg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
iseqlg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))

Proof of Theorem iseqlg
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqlg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 elex 3465 . . . 4 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6840 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 iseqlg.p . . . . . . . 8 𝑃 = (Base‘𝐺)
53, 4eqtr4di 2782 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 7384 . . . . . 6 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
7 fveq2 6840 . . . . . . 7 (𝑔 = 𝐺 → (cgrG‘𝑔) = (cgrG‘𝐺))
87breqd 5113 . . . . . 6 (𝑔 = 𝐺 → (𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩))
96, 8rabeqbidv 3421 . . . . 5 (𝑔 = 𝐺 → {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
10 df-eqlg 28769 . . . . 5 eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
11 ovex 7402 . . . . . 6 (𝑃m (0..^3)) ∈ V
1211rabex 5289 . . . . 5 {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ∈ V
139, 10, 12fvmpt 6950 . . . 4 (𝐺 ∈ V → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
141, 2, 133syl 18 . . 3 (𝜑 → (eqltrG‘𝐺) = {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
1514eleq2d 2814 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩}))
16 id 22 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → 𝑥 = ⟨“𝐴𝐵𝐶”⟩)
17 fveq1 6839 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
18 fveq1 6839 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
19 fveq1 6839 . . . . . 6 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
2017, 18, 19s3eqd 14806 . . . . 5 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → ⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)
2116, 20breq12d 5115 . . . 4 (𝑥 = ⟨“𝐴𝐵𝐶”⟩ → (𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2221elrab 3656 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩))
2322a1i 11 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑥 ∈ (𝑃m (0..^3)) ∣ 𝑥(cgrG‘𝐺)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩} ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
24 iseqlg.a . . . . . 6 (𝜑𝐴𝑃)
25 iseqlg.b . . . . . 6 (𝜑𝐵𝑃)
26 iseqlg.c . . . . . 6 (𝜑𝐶𝑃)
2724, 25, 26s3cld 14814 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
28 s3len 14836 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
294fvexi 6854 . . . . . 6 𝑃 ∈ V
30 3nn0 12436 . . . . . 6 3 ∈ ℕ0
31 wrdmap 14487 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
3229, 30, 31mp2an 692 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3327, 28, 32sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
3433biantrurd 532 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩)))
35 s3fv1 14834 . . . . . 6 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3625, 35syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
37 s3fv2 14835 . . . . . 6 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3826, 37syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
39 s3fv0 14833 . . . . . 6 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4024, 39syl 17 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4136, 38, 40s3eqd 14806 . . . 4 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ = ⟨“𝐵𝐶𝐴”⟩)
4241breq2d 5114 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4334, 42bitr3d 281 . 2 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)(⟨“𝐴𝐵𝐶”⟩‘0)”⟩) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
4415, 23, 433bitrd 305 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (eqltrG‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐵𝐶𝐴”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444   class class class wbr 5102  cfv 6499  (class class class)co 7369  m cmap 8776  0cc0 11044  1c1 11045  2c2 12217  3c3 12218  0cn0 12418  ..^cfzo 13591  chash 14271  Word cword 14454  ⟨“cs3 14784  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  Itvcitv 28336  LineGclng 28337  cgrGccgrg 28413  eqltrGceqlg 28768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-eqlg 28769
This theorem is referenced by:  iseqlgd  28771
  Copyright terms: Public domain W3C validator