| Metamath
Proof Explorer Theorem List (p. 282 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mulsasslem2 28101* | Lemma for mulsass 28103. Expand the right hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))) | ||
| Theorem | mulsasslem3 28102* | Lemma for mulsass 28103. Demonstrate the central equality. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ 𝑃 ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) & ⊢ 𝑄 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) & ⊢ 𝑅 ⊆ (( L ‘𝐶) ∪ ( R ‘𝐶)) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝐶) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝐵) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝐵 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝐴 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))((𝑥𝑂 ·s 𝐵) ·s 𝐶) = (𝑥𝑂 ·s (𝐵 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝐴 ·s 𝑦𝑂) ·s 𝐶) = (𝐴 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝐵) ·s 𝑧𝑂) = (𝐴 ·s (𝐵 ·s 𝑧𝑂))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = ((((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧)) -s ((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝑧)) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = (((𝑥 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))) -s (𝑥 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))))) | ||
| Theorem | mulsass 28103 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28076, addsdi 28092, mulsgt0 28081, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
| Theorem | mulsassd 28104 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
| Theorem | muls4d 28105 | Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s (𝐶 ·s 𝐷)) = ((𝐴 ·s 𝐶) ·s (𝐵 ·s 𝐷))) | ||
| Theorem | mulsunif2lem 28106* | Lemma for mulsunif2 28107. State the theorem with extra disjoint variable conditions. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
| Theorem | mulsunif2 28107* | Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
| Theorem | sltmul2 28108 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))) | ||
| Theorem | sltmul2d 28109 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐴) <s (𝐶 ·s 𝐵))) | ||
| Theorem | sltmul1d 28110 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐶))) | ||
| Theorem | slemul2d 28111 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 ·s 𝐴) ≤s (𝐶 ·s 𝐵))) | ||
| Theorem | slemul1d 28112 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶))) | ||
| Theorem | sltmulneg1d 28113 | Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 0s ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) | ||
| Theorem | sltmulneg2d 28114 | Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 0s ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐵) <s (𝐶 ·s 𝐴))) | ||
| Theorem | mulscan2dlem 28115 | Lemma for mulscan2d 28116. Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulscan2d 28116 | Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) = (𝐵 ·s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulscan1d 28117 | Cancellation of surreal multiplication when the left term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) = (𝐶 ·s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | muls12d 28118 | Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = (𝐵 ·s (𝐴 ·s 𝐶))) | ||
| Theorem | slemul1ad 28119 | Multiplication of both sides of surreal less-than or equal by a non-negative number. (Contributed by Scott Fenton, 17-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐶) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐶) ≤s (𝐵 ·s 𝐶)) | ||
| Theorem | sltmul12ad 28120 | Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐴) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 0s ≤s 𝐶) & ⊢ (𝜑 → 𝐶 <s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐷)) | ||
| Theorem | divsmo 28121* | Uniqueness of surreal inversion. Given a non-zero surreal 𝐴, there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃*𝑥 ∈ No (𝐴 ·s 𝑥) = 𝐵) | ||
| Theorem | muls0ord 28122 | If a surreal product is zero, one of its factors must be zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) = 0s ↔ (𝐴 = 0s ∨ 𝐵 = 0s ))) | ||
| Theorem | mulsne0bd 28123 | The product of two non-zero surreals is non-zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ≠ 0s ↔ (𝐴 ≠ 0s ∧ 𝐵 ≠ 0s ))) | ||
| Syntax | cdivs 28124 | Declare the syntax for surreal division. |
| class /su | ||
| Definition | df-divs 28125* | Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ /su = (𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (℩𝑧 ∈ No (𝑦 ·s 𝑧) = 𝑥)) | ||
| Theorem | divsval 28126* | The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) = (℩𝑥 ∈ No (𝐵 ·s 𝑥) = 𝐴)) | ||
| Theorem | norecdiv 28127* | If a surreal has a reciprocal, then it has any division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | ||
| Theorem | noreceuw 28128* | If a surreal has a reciprocal, then it has unique division. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝐵 ∈ No ) ∧ ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) → ∃!𝑦 ∈ No (𝐴 ·s 𝑦) = 𝐵) | ||
| Theorem | recsne0 28129* | If a surreal has a reciprocal, then it is non-zero. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0s ) | ||
| Theorem | divsmulw 28130* | Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex 28154, we can eliminate the existence hypothesis (see divsmul 28157). (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) ∧ ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
| Theorem | divsmulwd 28131* | Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
| Theorem | divsclw 28132* | Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) ∧ ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) → (𝐴 /su 𝐵) ∈ No ) | ||
| Theorem | divsclwd 28133* | Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | ||
| Theorem | divscan2wd 28134* | A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | ||
| Theorem | divscan1wd 28135* | A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐵 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s 𝐵) = 𝐴) | ||
| Theorem | sltdivmulwd 28136* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐶 ·s 𝐵))) | ||
| Theorem | sltdivmul2wd 28137* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 ·s 𝐶))) | ||
| Theorem | sltmuldivwd 28138* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
| Theorem | sltmuldiv2wd 28139* | Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
| Theorem | divsasswd 28140* | An associative law for surreal division. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) & ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) | ||
| Theorem | divs1 28141 | A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) | ||
| Theorem | precsexlemcbv 28142* | Lemma for surreal reciprocals. Change some bound variables. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) ⇒ ⊢ 𝐹 = rec((𝑞 ∈ V ↦ ⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd ‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑡)) /su 𝑧𝑅)}))〉), 〈{ 0s }, ∅〉) | ||
| Theorem | precsexlem1 28143 | Lemma for surreal reciprocals. Calculate the value of the recursive left function at zero. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐿‘∅) = { 0s } | ||
| Theorem | precsexlem2 28144 | Lemma for surreal reciprocals. Calculate the value of the recursive right function at zero. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝑅‘∅) = ∅ | ||
| Theorem | precsexlem3 28145* | Lemma for surreal reciprocals. Calculate the value of the recursive function at a successor. (Contributed by Scott Fenton, 12-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝐹‘suc 𝐼) = 〈((𝐿‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), ((𝑅‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉) | ||
| Theorem | precsexlem4 28146* | Lemma for surreal reciprocals. Calculate the value of the recursive left function at a successor. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝐿‘suc 𝐼) = ((𝐿‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}))) | ||
| Theorem | precsexlem5 28147* | Lemma for surreal reciprocals. Calculate the value of the recursive right function at a successor. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ (𝐼 ∈ ω → (𝑅‘suc 𝐼) = ((𝑅‘𝐼) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿‘𝐼)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝐼)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))) | ||
| Theorem | precsexlem6 28148* | Lemma for surreal reciprocal. Show that 𝐿 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝐿‘𝐼) ⊆ (𝐿‘𝐽)) | ||
| Theorem | precsexlem7 28149* | Lemma for surreal reciprocal. Show that 𝑅 is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) ⇒ ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐼 ⊆ 𝐽) → (𝑅‘𝐼) ⊆ (𝑅‘𝐽)) | ||
| Theorem | precsexlem8 28150* | Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ ω) → ((𝐿‘𝐼) ⊆ No ∧ (𝑅‘𝐼) ⊆ No )) | ||
| Theorem | precsexlem9 28151* | Lemma for surreal reciprocal. Show that the product of 𝐴 and a left element is less than one and the product of 𝐴 and a right element is greater than one. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ ω) → (∀𝑏 ∈ (𝐿‘𝐼)(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘𝐼) 1s <s (𝐴 ·s 𝑐))) | ||
| Theorem | precsexlem10 28152* | Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) ⇒ ⊢ (𝜑 → ∪ (𝐿 “ ω) <<s ∪ (𝑅 “ ω)) | ||
| Theorem | precsexlem11 28153* | Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for 𝐴. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ 𝐹 = rec((𝑝 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd ‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))〉), 〈{ 0s }, ∅〉) & ⊢ 𝐿 = (1st ∘ 𝐹) & ⊢ 𝑅 = (2nd ∘ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 ∈ No (𝑥𝑂 ·s 𝑦) = 1s )) & ⊢ 𝑌 = (∪ (𝐿 “ ω) |s ∪ (𝑅 “ ω)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝑌) = 1s ) | ||
| Theorem | precsex 28154* | Every positive surreal has a reciprocal. Theorem 10(iv) of [Conway] p. 21. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 0s <s 𝐴) → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 1s ) | ||
| Theorem | recsex 28155* | A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | ||
| Theorem | recsexd 28156* | A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 ≠ 0s ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | ||
| Theorem | divsmul 28157 | Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ (𝐶 ∈ No ∧ 𝐶 ≠ 0s )) → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
| Theorem | divsmuld 28158 | Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) = 𝐵 ↔ (𝐶 ·s 𝐵) = 𝐴)) | ||
| Theorem | divscl 28159 | Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → (𝐴 /su 𝐵) ∈ No ) | ||
| Theorem | divscld 28160 | Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) ∈ No ) | ||
| Theorem | divscan2d 28161 | A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐵 ·s (𝐴 /su 𝐵)) = 𝐴) | ||
| Theorem | divscan1d 28162 | A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s 𝐵) = 𝐴) | ||
| Theorem | sltdivmuld 28163 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐶 ·s 𝐵))) | ||
| Theorem | sltdivmul2d 28164 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 ·s 𝐶))) | ||
| Theorem | sltmuldivd 28165 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐶) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
| Theorem | sltmuldiv2d 28166 | Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su 𝐶))) | ||
| Theorem | divsassd 28167 | An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) | ||
| Theorem | divmuldivsd 28168 | Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → 𝐷 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) ·s (𝐶 /su 𝐷)) = ((𝐴 ·s 𝐶) /su (𝐵 ·s 𝐷))) | ||
| Theorem | divdivs1d 28169 | Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 /su 𝐵) /su 𝐶) = (𝐴 /su (𝐵 ·s 𝐶))) | ||
| Theorem | divsrecd 28170 | Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → (𝐴 /su 𝐵) = (𝐴 ·s ( 1s /su 𝐵))) | ||
| Theorem | divsdird 28171 | Distribution of surreal division over addition. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐶 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) | ||
| Theorem | divscan3d 28172 | A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐵 ≠ 0s ) ⇒ ⊢ (𝜑 → ((𝐵 ·s 𝐴) /su 𝐵) = 𝐴) | ||
| Syntax | cabss 28173 | Declare the syntax for surreal absolute value. |
| class abss | ||
| Definition | df-abss 28174 | Define the surreal absolute value function. See abssval 28175 for its value and absscl 28176 for its closure. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ abss = (𝑥 ∈ No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) | ||
| Theorem | abssval 28175 | The value of surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝐴 ∈ No → (abss‘𝐴) = if( 0s ≤s 𝐴, 𝐴, ( -us ‘𝐴))) | ||
| Theorem | absscl 28176 | Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝐴 ∈ No → (abss‘𝐴) ∈ No ) | ||
| Theorem | abssid 28177 | The absolute value of a non-negative surreal is itself. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) | ||
| Theorem | abs0s 28178 | The absolute value of surreal zero. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (abss‘ 0s ) = 0s | ||
| Theorem | abssnid 28179 | For a negative surreal, its absolute value is its negation. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 ≤s 0s ) → (abss‘𝐴) = ( -us ‘𝐴)) | ||
| Theorem | absmuls 28180 | Surreal absolute value distributes over multiplication. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (abss‘(𝐴 ·s 𝐵)) = ((abss‘𝐴) ·s (abss‘𝐵))) | ||
| Theorem | abssge0 28181 | The absolute value of a surreal number is non-negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝐴 ∈ No → 0s ≤s (abss‘𝐴)) | ||
| Theorem | abssor 28182 | The absolute value of a surreal is either that surreal or its negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝐴 ∈ No → ((abss‘𝐴) = 𝐴 ∨ (abss‘𝐴) = ( -us ‘𝐴))) | ||
| Theorem | abssneg 28183 | Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝐴 ∈ No → (abss‘( -us ‘𝐴)) = (abss‘𝐴)) | ||
| Theorem | sleabs 28184 | A surreal is less than or equal to its absolute value. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝐴 ∈ No → 𝐴 ≤s (abss‘𝐴)) | ||
| Theorem | absslt 28185 | Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((abss‘𝐴) <s 𝐵 ↔ (( -us ‘𝐵) <s 𝐴 ∧ 𝐴 <s 𝐵))) | ||
| Syntax | cons 28186 | Declare the syntax for surreal ordinals. |
| class Ons | ||
| Definition | df-ons 28187 | Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from [Conway] p. 27. (Contributed by Scott Fenton, 18-Mar-2025.) |
| ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | ||
| Theorem | elons 28188 | Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
| ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) | ||
| Theorem | onssno 28189 | The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
| ⊢ Ons ⊆ No | ||
| Theorem | onsno 28190 | A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025.) |
| ⊢ (𝐴 ∈ Ons → 𝐴 ∈ No ) | ||
| Theorem | 0ons 28191 | Surreal zero is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025.) |
| ⊢ 0s ∈ Ons | ||
| Theorem | 1ons 28192 | Surreal one is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025.) |
| ⊢ 1s ∈ Ons | ||
| Theorem | elons2 28193* | A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from [Conway] p. 27. (Contributed by Scott Fenton, 19-Mar-2025.) |
| ⊢ (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅)) | ||
| Theorem | elons2d 28194 | The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝑋 = (𝐴 |s ∅)) ⇒ ⊢ (𝜑 → 𝑋 ∈ Ons) | ||
| Theorem | onsleft 28195 | The left set of a surreal ordinal is the same as its old set. (Contributed by Scott Fenton, 6-Nov-2025.) |
| ⊢ (𝐴 ∈ Ons → ( O ‘( bday ‘𝐴)) = ( L ‘𝐴)) | ||
| Theorem | sltonold 28196* | The class of ordinals less than any surreal is a subset of that surreal's old set. (Contributed by Scott Fenton, 22-Mar-2025.) |
| ⊢ (𝐴 ∈ No → {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ⊆ ( O ‘( bday ‘𝐴))) | ||
| Theorem | sltonex 28197* | The class of ordinals less than any particular surreal is a set. Theorem 14 of [Conway] p. 27. (Contributed by Scott Fenton, 22-Mar-2025.) |
| ⊢ (𝐴 ∈ No → {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ∈ V) | ||
| Theorem | onscutleft 28198 | A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025.) |
| ⊢ (𝐴 ∈ Ons → 𝐴 = (( L ‘𝐴) |s ∅)) | ||
| Theorem | onscutlt 28199* | A surreal ordinal is the simplest number greater than all previous surreal ordinals. Theorem 15 of [Conway] p. 28. (Contributed by Scott Fenton, 4-Nov-2025.) |
| ⊢ (𝐴 ∈ Ons → 𝐴 = ({𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} |s ∅)) | ||
| Theorem | bday11on 28200 | The birthday function is one-to-one over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → 𝐴 = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |