| Metamath
Proof Explorer Theorem List (p. 282 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | subaddsd 28101 | Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) | ||
| Theorem | pncans 28102 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐵) = 𝐴) | ||
| Theorem | pncan3s 28103 | Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s (𝐵 -s 𝐴)) = 𝐵) | ||
| Theorem | pncan2s 28104 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐴) = 𝐵) | ||
| Theorem | npcans 28105 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | ||
| Theorem | sltsub1 28106 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) | ||
| Theorem | sltsub2 28107 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴))) | ||
| Theorem | sltsub1d 28108 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) | ||
| Theorem | sltsub2d 28109 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴))) | ||
| Theorem | negsubsdi2d 28110 | Distribution of negative over subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘(𝐴 -s 𝐵)) = (𝐵 -s 𝐴)) | ||
| Theorem | addsubsassd 28111 | Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = (𝐴 +s (𝐵 -s 𝐶))) | ||
| Theorem | addsubsd 28112 | Law for surreal addition and subtraction. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 -s 𝐶) +s 𝐵)) | ||
| Theorem | sltsubsubbd 28113 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) | ||
| Theorem | sltsubsub2bd 28114 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubsub3bd 28115 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) | ||
| Theorem | slesubsubbd 28116 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷))) | ||
| Theorem | slesubsub2bd 28117 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴))) | ||
| Theorem | slesubsub3bd 28118 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubaddd 28119 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐶 +s 𝐵))) | ||
| Theorem | sltsubadd2d 28120 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐵 +s 𝐶))) | ||
| Theorem | sltaddsubd 28121 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐶 -s 𝐵))) | ||
| Theorem | sltaddsub2d 28122 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) <s 𝐶 ↔ 𝐵 <s (𝐶 -s 𝐴))) | ||
| Theorem | slesubaddd 28123 | Surreal less-than or equal relationship between subtraction and addition. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s 𝐶 ↔ 𝐴 ≤s (𝐶 +s 𝐵))) | ||
| Theorem | subsubs4d 28124 | Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = (𝐴 -s (𝐵 +s 𝐶))) | ||
| Theorem | subsubs2d 28125 | Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s (𝐵 -s 𝐶)) = (𝐴 +s (𝐶 -s 𝐵))) | ||
| Theorem | nncansd 28126 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s (𝐴 -s 𝐵)) = 𝐵) | ||
| Theorem | posdifsd 28127 | Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubposd 28128 | Subtraction of a positive number decreases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ (𝐵 -s 𝐴) <s 𝐵)) | ||
| Theorem | subsge0d 28129 | Non-negative subtraction. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s ≤s (𝐴 -s 𝐵) ↔ 𝐵 ≤s 𝐴)) | ||
| Theorem | addsubs4d 28130 | Rearrangement of four terms in mixed addition and subtraction. Surreal version. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s (𝐶 +s 𝐷)) = ((𝐴 -s 𝐶) +s (𝐵 -s 𝐷))) | ||
| Theorem | sltm1d 28131 | A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s 1s ) <s 𝐴) | ||
| Syntax | cmuls 28132 | Set up the syntax for surreal multiplication. |
| class ·s | ||
| Definition | df-muls 28133* | Define surreal multiplication. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) | ||
| Theorem | mulsfn 28134 | Surreal multiplication is a function over surreals. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ·s Fn ( No × No ) | ||
| Theorem | mulsval 28135* | The value of surreal multiplication. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulsval2lem 28136* | Lemma for mulsval2 28137. Change bound variables in one of the cases. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ {𝑎 ∣ ∃𝑝 ∈ 𝑋 ∃𝑞 ∈ 𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟 ∈ 𝑋 ∃𝑠 ∈ 𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} | ||
| Theorem | mulsval2 28137* | The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | muls01 28138 | Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | ||
| Theorem | mulsrid 28139 | Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 ·s 1s ) = 𝐴) | ||
| Theorem | mulsridd 28140 | Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 1s ) = 𝐴) | ||
| Theorem | mulsproplemcbv 28141* | Lemma for surreal multiplication. Change some bound variables for later use. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) ⇒ ⊢ (𝜑 → ∀𝑔 ∈ No ∀ℎ ∈ No ∀𝑖 ∈ No ∀𝑗 ∈ No ∀𝑘 ∈ No ∀𝑙 ∈ No (((( bday ‘𝑔) +no ( bday ‘ℎ)) ∪ (((( bday ‘𝑖) +no ( bday ‘𝑘)) ∪ (( bday ‘𝑗) +no ( bday ‘𝑙))) ∪ ((( bday ‘𝑖) +no ( bday ‘𝑙)) ∪ (( bday ‘𝑗) +no ( bday ‘𝑘))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑔 ·s ℎ) ∈ No ∧ ((𝑖 <s 𝑗 ∧ 𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘)))))) | ||
| Theorem | mulsproplem1 28142* | Lemma for surreal multiplication. Instantiate some variables. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑊 ∈ No ) & ⊢ (𝜑 → 𝑇 ∈ No ) & ⊢ (𝜑 → 𝑈 ∈ No ) & ⊢ (𝜑 → ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (((( bday ‘𝑍) +no ( bday ‘𝑇)) ∪ (( bday ‘𝑊) +no ( bday ‘𝑈))) ∪ ((( bday ‘𝑍) +no ( bday ‘𝑈)) ∪ (( bday ‘𝑊) +no ( bday ‘𝑇))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸)))))) ⇒ ⊢ (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊 ∧ 𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇))))) | ||
| Theorem | mulsproplem2 28143* | Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and 𝐵 itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝑋 ∈ ( O ‘( bday ‘𝐴))) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝑋 ·s 𝐵) ∈ No ) | ||
| Theorem | mulsproplem3 28144* | Lemma for surreal multiplication. Under the inductive hypothesis, the product of 𝐴 itself and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ ( O ‘( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝑌) ∈ No ) | ||
| Theorem | mulsproplem4 28145* | Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝑋 ∈ ( O ‘( bday ‘𝐴))) & ⊢ (𝜑 → 𝑌 ∈ ( O ‘( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (𝑋 ·s 𝑌) ∈ No ) | ||
| Theorem | mulsproplem5 28146* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑃 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑄 ∈ ( L ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | ||
| Theorem | mulsproplem6 28147* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑃 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑄 ∈ ( L ‘𝐵)) & ⊢ (𝜑 → 𝑉 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑊 ∈ ( L ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) | ||
| Theorem | mulsproplem7 28148* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ ( L ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈))) | ||
| Theorem | mulsproplem8 28149* | Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑅 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ ( R ‘𝐵)) & ⊢ (𝜑 → 𝑉 ∈ ( R ‘𝐴)) & ⊢ (𝜑 → 𝑊 ∈ ( L ‘𝐵)) ⇒ ⊢ (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊))) | ||
| Theorem | mulsproplem9 28150* | Lemma for surreal multiplication. Show that the cut involved in surreal multiplication makes sense. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | ||
| Theorem | mulsproplem10 28151* | Lemma for surreal multiplication. State the cut properties of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulsproplem11 28152* | Lemma for surreal multiplication. Under the inductive hypothesis, demonstrate closure of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) | ||
| Theorem | mulsproplem12 28153* | Lemma for surreal multiplication. Demonstrate the second half of the inductive statement assuming 𝐶 and 𝐷 are not the same age and 𝐸 and 𝐹 are not the same age. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐸 ∈ No ) & ⊢ (𝜑 → 𝐹 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 𝐷) & ⊢ (𝜑 → 𝐸 <s 𝐹) & ⊢ (𝜑 → (( bday ‘𝐶) ∈ ( bday ‘𝐷) ∨ ( bday ‘𝐷) ∈ ( bday ‘𝐶))) & ⊢ (𝜑 → (( bday ‘𝐸) ∈ ( bday ‘𝐹) ∨ ( bday ‘𝐹) ∈ ( bday ‘𝐸))) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))) | ||
| Theorem | mulsproplem13 28154* | Lemma for surreal multiplication. Remove the restriction on 𝐶 and 𝐷 from mulsproplem12 28153. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐸 ∈ No ) & ⊢ (𝜑 → 𝐹 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 𝐷) & ⊢ (𝜑 → 𝐸 <s 𝐹) & ⊢ (𝜑 → (( bday ‘𝐸) ∈ ( bday ‘𝐹) ∨ ( bday ‘𝐹) ∈ ( bday ‘𝐸))) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))) | ||
| Theorem | mulsproplem14 28155* | Lemma for surreal multiplication. Finally, we remove the restriction on 𝐸 and 𝐹 from mulsproplem12 28153 and mulsproplem13 28154. This completes the induction on surreal multiplication. mulsprop 28156 brings all this together technically. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (𝜑 → ∀𝑎 ∈ No ∀𝑏 ∈ No ∀𝑐 ∈ No ∀𝑑 ∈ No ∀𝑒 ∈ No ∀𝑓 ∈ No (((( bday ‘𝑎) +no ( bday ‘𝑏)) ∪ (((( bday ‘𝑐) +no ( bday ‘𝑒)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑓))) ∪ ((( bday ‘𝑐) +no ( bday ‘𝑓)) ∪ (( bday ‘𝑑) +no ( bday ‘𝑒))))) ∈ ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (((( bday ‘𝐶) +no ( bday ‘𝐸)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐹))) ∪ ((( bday ‘𝐶) +no ( bday ‘𝐹)) ∪ (( bday ‘𝐷) +no ( bday ‘𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐸 ∈ No ) & ⊢ (𝜑 → 𝐹 ∈ No ) & ⊢ (𝜑 → 𝐶 <s 𝐷) & ⊢ (𝜑 → 𝐸 <s 𝐹) ⇒ ⊢ (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))) | ||
| Theorem | mulsprop 28156 | Surreals are closed under multiplication and obey a particular ordering law. Theorem 3.4 of [Gonshor] p. 17. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐶 ∈ No ∧ 𝐷 ∈ No ) ∧ (𝐸 ∈ No ∧ 𝐹 ∈ No )) → ((𝐴 ·s 𝐵) ∈ No ∧ ((𝐶 <s 𝐷 ∧ 𝐸 <s 𝐹) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))))) | ||
| Theorem | mulscutlem 28157* | Lemma for mulscut 28158. State the theorem with extra DV conditions. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulscut 28158* | Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulscut2 28159* | Show that the cut involved in surreal multiplication is actually a cut. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | ||
| Theorem | mulscl 28160 | The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | ||
| Theorem | mulscld 28161 | The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) | ||
| Theorem | sltmul 28162 | An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 5-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐶 ∈ No ∧ 𝐷 ∈ No )) → ((𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) | ||
| Theorem | sltmuld 28163 | An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → 𝐶 <s 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) | ||
| Theorem | slemuld 28164 | An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 ≤s 𝐵) & ⊢ (𝜑 → 𝐶 ≤s 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) | ||
| Theorem | mulscom 28165 | Surreal multiplication commutes. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴)) | ||
| Theorem | mulscomd 28166 | Surreal multiplication commutes. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴)) | ||
| Theorem | muls02 28167 | Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( 0s ·s 𝐴) = 0s ) | ||
| Theorem | mulslid 28168 | Surreal one is a left identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( 1s ·s 𝐴) = 𝐴) | ||
| Theorem | mulslidd 28169 | Surreal one is a left identity element for multiplication. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( 1s ·s 𝐴) = 𝐴) | ||
| Theorem | mulsgt0 28170 | The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) | ||
| Theorem | mulsgt0d 28171 | The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → 0s <s 𝐵) ⇒ ⊢ (𝜑 → 0s <s (𝐴 ·s 𝐵)) | ||
| Theorem | mulsge0d 28172 | The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s ≤s 𝐴) & ⊢ (𝜑 → 0s ≤s 𝐵) ⇒ ⊢ (𝜑 → 0s ≤s (𝐴 ·s 𝐵)) | ||
| Theorem | ssltmul1 28173* | One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)}) | ||
| Theorem | ssltmul2 28174* | One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | ||
| Theorem | mulsuniflem 28175* | Lemma for mulsunif 28176. State the theorem with some extra distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | mulsunif 28176* | Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | ||
| Theorem | addsdilem1 28177* | Lemma for surreal distribution. Expand the left hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))})))) | ||
| Theorem | addsdilem2 28178* | Lemma for surreal distribution. Expand the right hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))})))) | ||
| Theorem | addsdilem3 28179* | Lemma for addsdi 28181. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶))) & ⊢ (𝜓 → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) & ⊢ (𝜓 → 𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶))) | ||
| Theorem | addsdilem4 28180* | Lemma for addsdi 28181. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂))) & ⊢ (𝜓 → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) & ⊢ (𝜓 → 𝑍 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) -s (𝑋 ·s (𝐵 +s 𝑍))) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍)))) | ||
| Theorem | addsdi 28181 | Distributive law for surreal numbers. Commuted form of part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ·s (𝐵 +s 𝐶)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶))) | ||
| Theorem | addsdid 28182 | Distributive law for surreal numbers. Commuted form of part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶))) | ||
| Theorem | addsdird 28183 | Distributive law for surreal numbers. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) +s (𝐵 ·s 𝐶))) | ||
| Theorem | subsdid 28184 | Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 -s 𝐶)) = ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))) | ||
| Theorem | subsdird 28185 | Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) -s (𝐵 ·s 𝐶))) | ||
| Theorem | mulnegs1d 28186 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s 𝐵) = ( -us ‘(𝐴 ·s 𝐵))) | ||
| Theorem | mulnegs2d 28187 | Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) | ||
| Theorem | mul2negsd 28188 | Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ·s ( -us ‘𝐵)) = (𝐴 ·s 𝐵)) | ||
| Theorem | mulsasslem1 28189* | Lemma for mulsass 28192. Expand the left hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})))) | ||
| Theorem | mulsasslem2 28190* | Lemma for mulsass 28192. Expand the right hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))) | ||
| Theorem | mulsasslem3 28191* | Lemma for mulsass 28192. Demonstrate the central equality. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ 𝑃 ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) & ⊢ 𝑄 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) & ⊢ 𝑅 ⊆ (( L ‘𝐶) ∪ ( R ‘𝐶)) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝐶) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝑥𝑂 ·s 𝐵) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝐵 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝐴 ·s (𝑦𝑂 ·s 𝑧𝑂))) & ⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))((𝑥𝑂 ·s 𝐵) ·s 𝐶) = (𝑥𝑂 ·s (𝐵 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))((𝐴 ·s 𝑦𝑂) ·s 𝐶) = (𝐴 ·s (𝑦𝑂 ·s 𝐶))) & ⊢ (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))((𝐴 ·s 𝐵) ·s 𝑧𝑂) = (𝐴 ·s (𝐵 ·s 𝑧𝑂))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = ((((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝐶) +s ((𝐴 ·s 𝐵) ·s 𝑧)) -s ((((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ·s 𝑧)) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑄 ∃𝑧 ∈ 𝑅 𝑎 = (((𝑥 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))) -s (𝑥 ·s (((𝑦 ·s 𝐶) +s (𝐵 ·s 𝑧)) -s (𝑦 ·s 𝑧)))))) | ||
| Theorem | mulsass 28192 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28165, addsdi 28181, mulsgt0 28170, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
| Theorem | mulsassd 28193 | Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))) | ||
| Theorem | muls4d 28194 | Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) ·s (𝐶 ·s 𝐷)) = ((𝐴 ·s 𝐶) ·s (𝐵 ·s 𝐷))) | ||
| Theorem | mulsunif2lem 28195* | Lemma for mulsunif2 28196. State the theorem with extra disjoint variable conditions. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
| Theorem | mulsunif2 28196* | Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) | ||
| Theorem | sltmul2 28197 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))) | ||
| Theorem | sltmul2d 28198 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 ·s 𝐴) <s (𝐶 ·s 𝐵))) | ||
| Theorem | sltmul1d 28199 | Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ·s 𝐶) <s (𝐵 ·s 𝐶))) | ||
| Theorem | slemul2d 28200 | Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 ·s 𝐴) ≤s (𝐶 ·s 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |