HomeHome Metamath Proof Explorer
Theorem List (p. 282 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 28101-28200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremslt0neg2d 28101 Comparison of a surreal and its negative to zero. (Contributed by Scott Fenton, 10-Mar-2025.)
(𝜑𝐴 No )       (𝜑 → ( 0s <s 𝐴 ↔ ( -us𝐴) <s 0s ))
 
Theoremnegsf 28102 Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.)
-us : No No
 
Theoremnegsfo 28103 Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.)
-us : No onto No
 
Theoremnegsf1o 28104 Surreal negation is a bijection. (Contributed by Scott Fenton, 3-Feb-2025.)
-us : No 1-1-onto No
 
Theoremnegsunif 28105 Uniformity property for surreal negation. If 𝐿 and 𝑅 are any cut that represents 𝐴, then they may be used instead of ( L ‘𝐴) and ( R ‘𝐴) in the definition of negation. (Contributed by Scott Fenton, 14-Feb-2025.)
(𝜑𝐿 <<s 𝑅)    &   (𝜑𝐴 = (𝐿 |s 𝑅))       (𝜑 → ( -us𝐴) = (( -us𝑅) |s ( -us𝐿)))
 
Theoremnegsbdaylem 28106 Lemma for negsbday 28107. Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025.)
(𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))
 
Theoremnegsbday 28107 Negation of a surreal number preserves birthday. (Contributed by Scott Fenton, 8-Mar-2025.)
(𝐴 No → ( bday ‘( -us𝐴)) = ( bday 𝐴))
 
Theoremsubsval 28108 The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.)
((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
 
Theoremsubsvald 28109 The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us𝐵)))
 
Theoremsubscl 28110 Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.)
((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) ∈ No )
 
Theoremsubscld 28111 Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 -s 𝐵) ∈ No )
 
Theoremsubsf 28112 Function statement for surreal subtraction. (Contributed by Scott Fenton, 17-May-2025.)
-s :( No × No )⟶ No
 
Theoremsubsfo 28113 Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.)
-s :( No × No )–onto No
 
Theoremnegsval2 28114 Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 No → ( -us𝐴) = ( 0s -s 𝐴))
 
Theoremnegsval2d 28115 Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝜑𝐴 No )       (𝜑 → ( -us𝐴) = ( 0s -s 𝐴))
 
Theoremsubsid1 28116 Identity law for subtraction. (Contributed by Scott Fenton, 3-Feb-2025.)
(𝐴 No → (𝐴 -s 0s ) = 𝐴)
 
Theoremsubsid 28117 Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025.)
(𝐴 No → (𝐴 -s 𝐴) = 0s )
 
Theoremsubadds 28118 Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.)
((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))
 
Theoremsubaddsd 28119 Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 5-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴))
 
Theorempncans 28120 Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.)
((𝐴 No 𝐵 No ) → ((𝐴 +s 𝐵) -s 𝐵) = 𝐴)
 
Theorempncan3s 28121 Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025.)
((𝐴 No 𝐵 No ) → (𝐴 +s (𝐵 -s 𝐴)) = 𝐵)
 
Theorempncan2s 28122 Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.)
((𝐴 No 𝐵 No ) → ((𝐴 +s 𝐵) -s 𝐴) = 𝐵)
 
Theoremnpcans 28123 Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.)
((𝐴 No 𝐵 No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴)
 
Theoremsltsub1 28124 Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.)
((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶)))
 
Theoremsltsub2 28125 Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.)
((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴)))
 
Theoremsltsub1d 28126 Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶)))
 
Theoremsltsub2d 28127 Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴)))
 
Theoremnegsubsdi2d 28128 Distribution of negative over subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ( -us ‘(𝐴 -s 𝐵)) = (𝐵 -s 𝐴))
 
Theoremaddsubsassd 28129 Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = (𝐴 +s (𝐵 -s 𝐶)))
 
Theoremaddsubsd 28130 Law for surreal addition and subtraction. (Contributed by Scott Fenton, 4-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 -s 𝐶) +s 𝐵))
 
Theoremsltsubsubbd 28131 Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷)))
 
Theoremsltsubsub2bd 28132 Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴)))
 
Theoremsltsubsub3bd 28133 Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴)))
 
Theoremslesubsubbd 28134 Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷)))
 
Theoremslesubsub2bd 28135 Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴)))
 
Theoremslesubsub3bd 28136 Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴)))
 
Theoremsltsubaddd 28137 Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 -s 𝐵) <s 𝐶𝐴 <s (𝐶 +s 𝐵)))
 
Theoremsltsubadd2d 28138 Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 -s 𝐵) <s 𝐶𝐴 <s (𝐵 +s 𝐶)))
 
Theoremsltaddsubd 28139 Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 +s 𝐵) <s 𝐶𝐴 <s (𝐶 -s 𝐵)))
 
Theoremsltaddsub2d 28140 Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 +s 𝐵) <s 𝐶𝐵 <s (𝐶 -s 𝐴)))
 
Theoremslesubaddd 28141 Surreal less-than or equal relationship between subtraction and addition. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 -s 𝐵) ≤s 𝐶𝐴 ≤s (𝐶 +s 𝐵)))
 
Theoremsubsubs4d 28142 Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = (𝐴 -s (𝐵 +s 𝐶)))
 
Theoremsubsubs2d 28143 Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → (𝐴 -s (𝐵 -s 𝐶)) = (𝐴 +s (𝐶 -s 𝐵)))
 
Theoremnncansd 28144 Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 -s (𝐴 -s 𝐵)) = 𝐵)
 
Theoremposdifsd 28145 Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐴)))
 
Theoremsltsubposd 28146 Subtraction of a positive number decreases the sum. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ( 0s <s 𝐴 ↔ (𝐵 -s 𝐴) <s 𝐵))
 
Theoremsubsge0d 28147 Non-negative subtraction. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ( 0s ≤s (𝐴 -s 𝐵) ↔ 𝐵 ≤s 𝐴))
 
Theoremaddsubs4d 28148 Rearrangement of four terms in mixed addition and subtraction. Surreal version. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )       (𝜑 → ((𝐴 +s 𝐵) -s (𝐶 +s 𝐷)) = ((𝐴 -s 𝐶) +s (𝐵 -s 𝐷)))
 
Theoremsltm1d 28149 A surreal is greater than itself minus one. (Contributed by Scott Fenton, 20-Aug-2025.)
(𝜑𝐴 No )       (𝜑 → (𝐴 -s 1s ) <s 𝐴)
 
15.5.3  Multiplication
 
Syntaxcmuls 28150 Set up the syntax for surreal multiplication.
class ·s
 
Definitiondf-muls 28151* Define surreal multiplication. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 4-Feb-2025.)
·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))))
 
Theoremmulsfn 28152 Surreal multiplication is a function over surreals. (Contributed by Scott Fenton, 4-Feb-2025.)
·s Fn ( No × No )
 
Theoremmulsval 28153* The value of surreal multiplication. (Contributed by Scott Fenton, 4-Feb-2025.)
((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremmulsval2lem 28154* Lemma for mulsval2 28155. Change bound variables in one of the cases. (Contributed by Scott Fenton, 8-Mar-2025.)
{𝑎 ∣ ∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}
 
Theoremmulsval2 28155* The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.)
((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremmuls01 28156 Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.)
(𝐴 No → (𝐴 ·s 0s ) = 0s )
 
Theoremmulsrid 28157 Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025.)
(𝐴 No → (𝐴 ·s 1s ) = 𝐴)
 
Theoremmulsridd 28158 Surreal one is a right identity element for multiplication. (Contributed by Scott Fenton, 14-Mar-2025.)
(𝜑𝐴 No )       (𝜑 → (𝐴 ·s 1s ) = 𝐴)
 
Theoremmulsproplemcbv 28159* Lemma for surreal multiplication. Change some bound variables for later use. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))       (𝜑 → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))))
 
Theoremmulsproplem1 28160* Lemma for surreal multiplication. Instantiate some variables. (Contributed by Scott Fenton, 4-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝑋 No )    &   (𝜑𝑌 No )    &   (𝜑𝑍 No )    &   (𝜑𝑊 No )    &   (𝜑𝑇 No )    &   (𝜑𝑈 No )    &   (𝜑 → ((( bday 𝑋) +no ( bday 𝑌)) ∪ (((( bday 𝑍) +no ( bday 𝑇)) ∪ (( bday 𝑊) +no ( bday 𝑈))) ∪ ((( bday 𝑍) +no ( bday 𝑈)) ∪ (( bday 𝑊) +no ( bday 𝑇))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))       (𝜑 → ((𝑋 ·s 𝑌) ∈ No ∧ ((𝑍 <s 𝑊𝑇 <s 𝑈) → ((𝑍 ·s 𝑈) -s (𝑍 ·s 𝑇)) <s ((𝑊 ·s 𝑈) -s (𝑊 ·s 𝑇)))))
 
Theoremmulsproplem2 28161* Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and 𝐵 itself is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))    &   (𝜑𝐵 No )       (𝜑 → (𝑋 ·s 𝐵) ∈ No )
 
Theoremmulsproplem3 28162* Lemma for surreal multiplication. Under the inductive hypothesis, the product of 𝐴 itself and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))       (𝜑 → (𝐴 ·s 𝑌) ∈ No )
 
Theoremmulsproplem4 28163* Lemma for surreal multiplication. Under the inductive hypothesis, the product of a member of the old set of 𝐴 and a member of the old set of 𝐵 is a surreal number. (Contributed by Scott Fenton, 4-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝑋 ∈ ( O ‘( bday 𝐴)))    &   (𝜑𝑌 ∈ ( O ‘( bday 𝐵)))       (𝜑 → (𝑋 ·s 𝑌) ∈ No )
 
Theoremmulsproplem5 28164* Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 4-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑃 ∈ ( L ‘𝐴))    &   (𝜑𝑄 ∈ ( L ‘𝐵))    &   (𝜑𝑇 ∈ ( L ‘𝐴))    &   (𝜑𝑈 ∈ ( R ‘𝐵))       (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))
 
Theoremmulsproplem6 28165* Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑃 ∈ ( L ‘𝐴))    &   (𝜑𝑄 ∈ ( L ‘𝐵))    &   (𝜑𝑉 ∈ ( R ‘𝐴))    &   (𝜑𝑊 ∈ ( L ‘𝐵))       (𝜑 → (((𝑃 ·s 𝐵) +s (𝐴 ·s 𝑄)) -s (𝑃 ·s 𝑄)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
 
Theoremmulsproplem7 28166* Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑅 ∈ ( R ‘𝐴))    &   (𝜑𝑆 ∈ ( R ‘𝐵))    &   (𝜑𝑇 ∈ ( L ‘𝐴))    &   (𝜑𝑈 ∈ ( R ‘𝐵))       (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑇 ·s 𝐵) +s (𝐴 ·s 𝑈)) -s (𝑇 ·s 𝑈)))
 
Theoremmulsproplem8 28167* Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑅 ∈ ( R ‘𝐴))    &   (𝜑𝑆 ∈ ( R ‘𝐵))    &   (𝜑𝑉 ∈ ( R ‘𝐴))    &   (𝜑𝑊 ∈ ( L ‘𝐵))       (𝜑 → (((𝑅 ·s 𝐵) +s (𝐴 ·s 𝑆)) -s (𝑅 ·s 𝑆)) <s (((𝑉 ·s 𝐵) +s (𝐴 ·s 𝑊)) -s (𝑉 ·s 𝑊)))
 
Theoremmulsproplem9 28168* Lemma for surreal multiplication. Show that the cut involved in surreal multiplication makes sense. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
 
Theoremmulsproplem10 28169* Lemma for surreal multiplication. State the cut properties of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremmulsproplem11 28170* Lemma for surreal multiplication. Under the inductive hypothesis, demonstrate closure of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 ·s 𝐵) ∈ No )
 
Theoremmulsproplem12 28171* Lemma for surreal multiplication. Demonstrate the second half of the inductive statement assuming 𝐶 and 𝐷 are not the same age and 𝐸 and 𝐹 are not the same age. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )    &   (𝜑𝐸 No )    &   (𝜑𝐹 No )    &   (𝜑𝐶 <s 𝐷)    &   (𝜑𝐸 <s 𝐹)    &   (𝜑 → (( bday 𝐶) ∈ ( bday 𝐷) ∨ ( bday 𝐷) ∈ ( bday 𝐶)))    &   (𝜑 → (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)))       (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
 
Theoremmulsproplem13 28172* Lemma for surreal multiplication. Remove the restriction on 𝐶 and 𝐷 from mulsproplem12 28171. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )    &   (𝜑𝐸 No )    &   (𝜑𝐹 No )    &   (𝜑𝐶 <s 𝐷)    &   (𝜑𝐸 <s 𝐹)    &   (𝜑 → (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)))       (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
 
Theoremmulsproplem14 28173* Lemma for surreal multiplication. Finally, we remove the restriction on 𝐸 and 𝐹 from mulsproplem12 28171 and mulsproplem13 28172. This completes the induction on surreal multiplication. mulsprop 28174 brings all this together technically. (Contributed by Scott Fenton, 5-Mar-2025.)
(𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )    &   (𝜑𝐸 No )    &   (𝜑𝐹 No )    &   (𝜑𝐶 <s 𝐷)    &   (𝜑𝐸 <s 𝐹)       (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
 
Theoremmulsprop 28174 Surreals are closed under multiplication and obey a particular ordering law. Theorem 3.4 of [Gonshor] p. 17. (Contributed by Scott Fenton, 5-Mar-2025.)
(((𝐴 No 𝐵 No ) ∧ (𝐶 No 𝐷 No ) ∧ (𝐸 No 𝐹 No )) → ((𝐴 ·s 𝐵) ∈ No ∧ ((𝐶 <s 𝐷𝐸 <s 𝐹) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))))
 
Theoremmulscutlem 28175* Lemma for mulscut 28176. State the theorem with extra DV conditions. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremmulscut 28176* Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremmulscut2 28177* Show that the cut involved in surreal multiplication is actually a cut. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
 
Theoremmulscl 28178 The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 5-Mar-2025.)
((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
 
Theoremmulscld 28179 The surreals are closed under multiplication. Theorem 8(i) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 ·s 𝐵) ∈ No )
 
Theoremsltmul 28180 An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 5-Mar-2025.)
(((𝐴 No 𝐵 No ) ∧ (𝐶 No 𝐷 No )) → ((𝐴 <s 𝐵𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
 
Theoremsltmuld 28181 An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )    &   (𝜑𝐴 <s 𝐵)    &   (𝜑𝐶 <s 𝐷)       (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
 
Theoremslemuld 28182 An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑𝐷 No )    &   (𝜑𝐴 ≤s 𝐵)    &   (𝜑𝐶 ≤s 𝐷)       (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
 
Theoremmulscom 28183 Surreal multiplication commutes. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴))
 
Theoremmulscomd 28184 Surreal multiplication commutes. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 6-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴))
 
Theoremmuls02 28185 Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.)
(𝐴 No → ( 0s ·s 𝐴) = 0s )
 
Theoremmulslid 28186 Surreal one is a left identity element for multiplication. (Contributed by Scott Fenton, 4-Feb-2025.)
(𝐴 No → ( 1s ·s 𝐴) = 𝐴)
 
Theoremmulslidd 28187 Surreal one is a left identity element for multiplication. (Contributed by Scott Fenton, 14-Mar-2025.)
(𝜑𝐴 No )       (𝜑 → ( 1s ·s 𝐴) = 𝐴)
 
Theoremmulsgt0 28188 The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.)
(((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵))
 
Theoremmulsgt0d 28189 The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑 → 0s <s 𝐴)    &   (𝜑 → 0s <s 𝐵)       (𝜑 → 0s <s (𝐴 ·s 𝐵))
 
Theoremmulsge0d 28190 The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑 → 0s ≤s 𝐴)    &   (𝜑 → 0s ≤s 𝐵)       (𝜑 → 0s ≤s (𝐴 ·s 𝐵))
 
Theoremssltmul1 28191* One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐿 <<s 𝑅)    &   (𝜑𝑀 <<s 𝑆)    &   (𝜑𝐴 = (𝐿 |s 𝑅))    &   (𝜑𝐵 = (𝑀 |s 𝑆))       (𝜑 → ({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)})
 
Theoremssltmul2 28192* One surreal set less-than relationship for cuts of 𝐴 and 𝐵. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐿 <<s 𝑅)    &   (𝜑𝑀 <<s 𝑆)    &   (𝜑𝐴 = (𝐿 |s 𝑅))    &   (𝜑𝐵 = (𝑀 |s 𝑆))       (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
 
Theoremmulsuniflem 28193* Lemma for mulsunif 28194. State the theorem with some extra distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.)
(𝜑𝐿 <<s 𝑅)    &   (𝜑𝑀 <<s 𝑆)    &   (𝜑𝐴 = (𝐿 |s 𝑅))    &   (𝜑𝐵 = (𝑀 |s 𝑆))       (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremmulsunif 28194* Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.)
(𝜑𝐿 <<s 𝑅)    &   (𝜑𝑀 <<s 𝑆)    &   (𝜑𝐴 = (𝐿 |s 𝑅))    &   (𝜑𝐵 = (𝑀 |s 𝑆))       (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
 
Theoremaddsdilem1 28195* Lemma for surreal distribution. Expand the left hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝐿)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝑅 +s 𝐶))) -s (𝑥𝐿 ·s (𝑦𝑅 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝑅))) -s (𝑥𝐿 ·s (𝐵 +s 𝑧𝑅)))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑦𝐿 +s 𝐶))) -s (𝑥𝑅 ·s (𝑦𝐿 +s 𝐶)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑧𝐿))) -s (𝑥𝑅 ·s (𝐵 +s 𝑧𝐿)))}))))
 
Theoremaddsdilem2 28196* Lemma for surreal distribution. Expand the right hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))))
 
Theoremaddsdilem3 28197* Lemma for addsdi 28199. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))    &   (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))    &   (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))    &   (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))    &   (𝜓𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))       ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
 
Theoremaddsdilem4 28198* Lemma for addsdi 28199. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )    &   (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))    &   (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂)))    &   (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂)))    &   (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))    &   (𝜓𝑍 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶)))       ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) -s (𝑋 ·s (𝐵 +s 𝑍))) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍))))
 
Theoremaddsdi 28199 Distributive law for surreal numbers. Commuted form of part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.)
((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ·s (𝐵 +s 𝐶)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)))
 
Theoremaddsdid 28200 Distributive law for surreal numbers. Commuted form of part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐶 No )       (𝜑 → (𝐴 ·s (𝐵 +s 𝐶)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >