Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-extv Structured version   Visualization version   GIF version

Definition df-extv 33581
Description: Define the "variable extension" function. The function ((𝐼extendVars𝑅)‘𝐴) converts polynomials with variables indexed by (𝐼 ∖ {𝐴}) into polynomials indexed by 𝐼, and therefore maps elements of ((𝐼 ∖ {𝐴}) mPoly 𝑅) onto (𝐼 mPoly 𝑅). (Contributed by Thierry Arnoux, 20-Jan-2026.)
Assertion
Ref Expression
df-extv extendVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))))
Distinct variable group:   𝑖,𝑟,𝑎,,𝑓,𝑥

Detailed syntax breakdown of Definition df-extv
StepHypRef Expression
1 cextv 33580 . 2 class extendVars
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 3437 . . 3 class V
5 va . . . 4 setvar 𝑎
62cv 1540 . . . 4 class 𝑖
7 vf . . . . 5 setvar 𝑓
85cv 1540 . . . . . . . . 9 class 𝑎
98csn 4575 . . . . . . . 8 class {𝑎}
106, 9cdif 3895 . . . . . . 7 class (𝑖 ∖ {𝑎})
113cv 1540 . . . . . . 7 class 𝑟
12 cmpl 21845 . . . . . . 7 class mPoly
1310, 11, 12co 7352 . . . . . 6 class ((𝑖 ∖ {𝑎}) mPoly 𝑟)
14 cbs 17122 . . . . . 6 class Base
1513, 14cfv 6486 . . . . 5 class (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟))
16 vx . . . . . 6 setvar 𝑥
17 vh . . . . . . . . 9 setvar
1817cv 1540 . . . . . . . 8 class
19 cc0 11013 . . . . . . . 8 class 0
20 cfsupp 9252 . . . . . . . 8 class finSupp
2118, 19, 20wbr 5093 . . . . . . 7 wff finSupp 0
22 cn0 12388 . . . . . . . 8 class 0
23 cmap 8756 . . . . . . . 8 class m
2422, 6, 23co 7352 . . . . . . 7 class (ℕ0m 𝑖)
2521, 17, 24crab 3396 . . . . . 6 class { ∈ (ℕ0m 𝑖) ∣ finSupp 0}
2616cv 1540 . . . . . . . . 9 class 𝑥
278, 26cfv 6486 . . . . . . . 8 class (𝑥𝑎)
2827, 19wceq 1541 . . . . . . 7 wff (𝑥𝑎) = 0
2926, 10cres 5621 . . . . . . . 8 class (𝑥 ↾ (𝑖 ∖ {𝑎}))
307cv 1540 . . . . . . . 8 class 𝑓
3129, 30cfv 6486 . . . . . . 7 class (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎})))
32 c0g 17345 . . . . . . . 8 class 0g
3311, 32cfv 6486 . . . . . . 7 class (0g𝑟)
3428, 31, 33cif 4474 . . . . . 6 class if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))
3516, 25, 34cmpt 5174 . . . . 5 class (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟)))
367, 15, 35cmpt 5174 . . . 4 class (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))
375, 6, 36cmpt 5174 . . 3 class (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟)))))
382, 3, 4, 4, 37cmpo 7354 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))))
391, 38wceq 1541 1 wff extendVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))))
Colors of variables: wff setvar class
This definition is referenced by:  extvval  33582
  Copyright terms: Public domain W3C validator