Detailed syntax breakdown of Definition df-extv
| Step | Hyp | Ref
| Expression |
| 1 | | cextv 33580 |
. 2
class
extendVars |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3437 |
. . 3
class
V |
| 5 | | va |
. . . 4
setvar 𝑎 |
| 6 | 2 | cv 1540 |
. . . 4
class 𝑖 |
| 7 | | vf |
. . . . 5
setvar 𝑓 |
| 8 | 5 | cv 1540 |
. . . . . . . . 9
class 𝑎 |
| 9 | 8 | csn 4575 |
. . . . . . . 8
class {𝑎} |
| 10 | 6, 9 | cdif 3895 |
. . . . . . 7
class (𝑖 ∖ {𝑎}) |
| 11 | 3 | cv 1540 |
. . . . . . 7
class 𝑟 |
| 12 | | cmpl 21845 |
. . . . . . 7
class
mPoly |
| 13 | 10, 11, 12 | co 7352 |
. . . . . 6
class ((𝑖 ∖ {𝑎}) mPoly 𝑟) |
| 14 | | cbs 17122 |
. . . . . 6
class
Base |
| 15 | 13, 14 | cfv 6486 |
. . . . 5
class
(Base‘((𝑖
∖ {𝑎}) mPoly 𝑟)) |
| 16 | | vx |
. . . . . 6
setvar 𝑥 |
| 17 | | vh |
. . . . . . . . 9
setvar ℎ |
| 18 | 17 | cv 1540 |
. . . . . . . 8
class ℎ |
| 19 | | cc0 11013 |
. . . . . . . 8
class
0 |
| 20 | | cfsupp 9252 |
. . . . . . . 8
class
finSupp |
| 21 | 18, 19, 20 | wbr 5093 |
. . . . . . 7
wff ℎ finSupp 0 |
| 22 | | cn0 12388 |
. . . . . . . 8
class
ℕ0 |
| 23 | | cmap 8756 |
. . . . . . . 8
class
↑m |
| 24 | 22, 6, 23 | co 7352 |
. . . . . . 7
class
(ℕ0 ↑m 𝑖) |
| 25 | 21, 17, 24 | crab 3396 |
. . . . . 6
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0} |
| 26 | 16 | cv 1540 |
. . . . . . . . 9
class 𝑥 |
| 27 | 8, 26 | cfv 6486 |
. . . . . . . 8
class (𝑥‘𝑎) |
| 28 | 27, 19 | wceq 1541 |
. . . . . . 7
wff (𝑥‘𝑎) = 0 |
| 29 | 26, 10 | cres 5621 |
. . . . . . . 8
class (𝑥 ↾ (𝑖 ∖ {𝑎})) |
| 30 | 7 | cv 1540 |
. . . . . . . 8
class 𝑓 |
| 31 | 29, 30 | cfv 6486 |
. . . . . . 7
class (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))) |
| 32 | | c0g 17345 |
. . . . . . . 8
class
0g |
| 33 | 11, 32 | cfv 6486 |
. . . . . . 7
class
(0g‘𝑟) |
| 34 | 28, 31, 33 | cif 4474 |
. . . . . 6
class if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)) |
| 35 | 16, 25, 34 | cmpt 5174 |
. . . . 5
class (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟))) |
| 36 | 7, 15, 35 | cmpt 5174 |
. . . 4
class (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)))) |
| 37 | 5, 6, 36 | cmpt 5174 |
. . 3
class (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟))))) |
| 38 | 2, 3, 4, 4, 37 | cmpo 7354 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)))))) |
| 39 | 1, 38 | wceq 1541 |
1
wff extendVars
= (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)))))) |