Home | Metamath
Proof Explorer Theorem List (p. 337 of 463) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29031) |
Hilbert Space Explorer
(29032-30554) |
Users' Mathboxes
(30555-46226) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | naddfn 33601 | Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ +no Fn (On × On) | ||
Theorem | naddcllem 33602* | Lemma for ordinal addition closure. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})) | ||
Theorem | naddcl 33603 | Closure law for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On) | ||
Theorem | naddov 33604* | The value of natural addition. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}) | ||
Theorem | naddov2 33605* | Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)}) | ||
Theorem | naddcom 33606 | Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴)) | ||
Theorem | naddid1 33607 | Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.) |
⊢ (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴) | ||
Theorem | naddssim 33608 | Ordinal less-than-or-equal is preserved by natural addition. (Contributed by Scott Fenton, 7-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) | ||
Theorem | naddelim 33609 | Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | ||
Theorem | naddel1 33610 | Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | ||
Theorem | naddel2 33611 | Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐶 +no 𝐴) ∈ (𝐶 +no 𝐵))) | ||
Theorem | naddss1 33612 | Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 +no 𝐶) ⊆ (𝐵 +no 𝐶))) | ||
Theorem | naddss2 33613 | Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +no 𝐴) ⊆ (𝐶 +no 𝐵))) | ||
Syntax | csur 33614 | Declare the class of all surreal numbers (see df-no 33617). |
class No | ||
Syntax | cslt 33615 | Declare the less than relationship over surreal numbers (see df-slt 33618). |
class <s | ||
Syntax | cbday 33616 | Declare the birthday function for surreal numbers (see df-bday 33619). |
class bday | ||
Definition | df-no 33617* |
Define the class of surreal numbers. The surreal numbers are a proper
class of numbers developed by John H. Conway and introduced by Donald
Knuth in 1975. They form a proper class into which all ordered fields
can be embedded. The approach we take to defining them was first
introduced by Hary Gonshor, and is based on the conception of a
"sign
expansion" of a surreal number. We define the surreals as
ordinal-indexed sequences of 1o and
2o, analagous to Gonshor's
( − ) and ( + ).
After introducing this definition, we will abstract away from it using axioms that Norman Alling developed in "Foundations of Analysis over Surreal Number Fields." This is done in an effort to be agnostic towards the exact implementation of surreals. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}} | ||
Definition | df-slt 33618* | Next, we introduce surreal less-than, a comparison relationship over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | ||
Definition | df-bday 33619 | Finally, we introduce the birthday function. This function maps each surreal to an ordinal. In our implementation, this is the domain of the sign function. The important properties of this function are established later. (Contributed by Scott Fenton, 11-Jun-2011.) |
⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | ||
Theorem | elno 33620* | Membership in the surreals. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
Theorem | sltval 33621* | The value of the surreal less than relationship. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘𝑥)))) | ||
Theorem | bdayval 33622 | The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | ||
Theorem | nofun 33623 | A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → Fun 𝐴) | ||
Theorem | nodmon 33624 | The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | ||
Theorem | norn 33625 | The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | ||
Theorem | nofnbday 33626 | A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) | ||
Theorem | nodmord 33627 | The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (𝐴 ∈ No → Ord dom 𝐴) | ||
Theorem | elno2 33628 | An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) | ||
Theorem | elno3 33629 | Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) | ||
Theorem | sltval2 33630* | Alternate expression for surreal less than. Two surreals obey surreal less than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) | ||
Theorem | nofv 33631 | The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) | ||
Theorem | nosgnn0 33632 | ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ ¬ ∅ ∈ {1o, 2o} | ||
Theorem | nosgnn0i 33633 | If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ∅ ≠ 𝑋 | ||
Theorem | noreson 33634 | The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) | ||
Theorem | sltintdifex 33635* | If 𝐴 <s 𝐵, then the intersection of all the ordinals that have differing signs in 𝐴 and 𝐵 exists. (Contributed by Scott Fenton, 22-Feb-2012.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V)) | ||
Theorem | sltres 33636 | If the restrictions of two surreals to a given ordinal obey surreal less than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → 𝐴 <s 𝐵)) | ||
Theorem | noxp1o 33637 | The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) | ||
Theorem | noseponlem 33638* | Lemma for nosepon 33639. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) | ||
Theorem | nosepon 33639* | Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | ||
Theorem | noextend 33640 | Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 𝑋〉}) ∈ No ) | ||
Theorem | noextendseq 33641 | Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No ) | ||
Theorem | noextenddif 33642* | Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} = dom 𝐴) | ||
Theorem | noextendlt 33643 | Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 1o〉}) <s 𝐴) | ||
Theorem | noextendgt 33644 | Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
⊢ (𝐴 ∈ No → 𝐴 <s (𝐴 ∪ {〈dom 𝐴, 2o〉})) | ||
Theorem | nolesgn2o 33645 | Given 𝐴 less than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) | ||
Theorem | nolesgn2ores 33646 | Given 𝐴 less than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
Theorem | nogesgn1o 33647 | Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then 𝐵(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐵‘𝑋) = 1o) | ||
Theorem | nogesgn1ores 33648 | Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
Theorem | sltsolem1 33649 | Lemma for sltso 33650. The sign expansion relationship totally orders the surreal signs. (Contributed by Scott Fenton, 8-Jun-2011.) |
⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | ||
Theorem | sltso 33650 | Surreal less than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ <s Or No | ||
Theorem | bdayfo 33651 | The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
⊢ bday : No –onto→On | ||
Theorem | fvnobday 33652 | The value of a surreal at its birthday is ∅. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) |
⊢ (𝐴 ∈ No → (𝐴‘( bday ‘𝐴)) = ∅) | ||
Theorem | nosepnelem 33653* | Lemma for nosepne 33654. (Contributed by Scott Fenton, 24-Nov-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) | ||
Theorem | nosepne 33654* | The value of two non-equal surreals at the first place they differ is different. (Contributed by Scott Fenton, 24-Nov-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) | ||
Theorem | nosep1o 33655* | If the value of a surreal at a separator is 1o then the surreal is lesser. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o) → 𝐴 <s 𝐵) | ||
Theorem | nosep2o 33656* | If the value of a surreal at a separator is 2o then the surreal is greater. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 <s 𝐴) | ||
Theorem | nosepdmlem 33657* | Lemma for nosepdm 33658. (Contributed by Scott Fenton, 24-Nov-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | ||
Theorem | nosepdm 33658* | The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | ||
Theorem | nosepeq 33659* | The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) | ||
Theorem | nosepssdm 33660* | Given two non-equal surreals, their separator is less than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴) | ||
Theorem | nodenselem4 33661* | Lemma for nodense 33666. Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) | ||
Theorem | nodenselem5 33662* | Lemma for nodense 33666. If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 33661 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday ‘𝐴)) | ||
Theorem | nodenselem6 33663* | The restriction of a surreal to the abstraction from nodenselem4 33661 is still a surreal. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No ) | ||
Theorem | nodenselem7 33664* | Lemma for nodense 33666. 𝐴 and 𝐵 are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐶 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝐶) = (𝐵‘𝐶))) | ||
Theorem | nodenselem8 33665* | Lemma for nodense 33666. Give a condition for surreal less than when two surreals have the same birthday. (Contributed by Scott Fenton, 19-Jun-2011.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 ↔ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) | ||
Theorem | nodense 33666* | Given two distinct surreals with the same birthday, there is an older surreal lying between the two of them. Axiom SD of [Alling] p. 184. (Contributed by Scott Fenton, 16-Jun-2011.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ No (( bday ‘𝑥) ∈ ( bday ‘𝐴) ∧ 𝐴 <s 𝑥 ∧ 𝑥 <s 𝐵)) | ||
The theorems in this section are derived from "A clean way to separate sets of surreals" by Paolo Lipparini, https://doi.org/10.48550/arXiv.1712.03500. | ||
Theorem | bdayimaon 33667 | Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) | ||
Theorem | nolt02olem 33668 | Lemma for nolt02o 33669. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴 ⊆ 𝑋. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) | ||
Theorem | nolt02o 33669 | Given 𝐴 less than 𝐵, equal to 𝐵 up to 𝑋, and undefined at 𝑋, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → (𝐵‘𝑋) = 2o) | ||
Theorem | nogt01o 33670 | Given 𝐴 greater than 𝐵, equal to 𝐵 up to 𝑋, and 𝐵(𝑋) undefined, then 𝐴(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐵‘𝑋) = ∅) → (𝐴‘𝑋) = 1o) | ||
Theorem | noresle 33671* | Restriction law for surreals. Lemma 2.1.4 of [Lipparini] p. 3. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ (((𝑈 ∈ No ∧ 𝑆 ∈ No ) ∧ (dom 𝑈 ⊆ 𝐴 ∧ dom 𝑆 ⊆ 𝐴 ∧ ∀𝑔 ∈ 𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈) | ||
Theorem | nomaxmo 33672* | A class of surreals has at most one maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑥 <s 𝑦) | ||
Theorem | nominmo 33673* | A class of surreals has at most one minimum. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝑆 ⊆ No → ∃*𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬ 𝑦 <s 𝑥) | ||
Theorem | nosupprefixmo 33674* | In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 26-Nov-2021.) |
⊢ (𝐴 ⊆ No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) | ||
Theorem | noinfprefixmo 33675* | In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ (𝐴 ⊆ No → ∃*𝑥∃𝑢 ∈ 𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢‘𝐺) = 𝑥)) | ||
Theorem | nosupcbv 33676* | Lemma to change bound variables in a surreal supremum. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ 𝑆 = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑑 ∣ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎)))) | ||
Theorem | nosupno 33677* | The next several theorems deal with a surreal "supremum". This surreal will ultimately be shown to bound 𝐴 below and bound the restriction of any surreal above. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ 𝑉) → 𝑆 ∈ No ) | ||
Theorem | nosupdm 33678* | The domain of the surreal supremum when there is no maximum. The primary point of this theorem is to change bound variable. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ (¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}) | ||
Theorem | nosupbday 33679* | Birthday bounding law for surreal supremum. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ (((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂)) → ( bday ‘𝑆) ⊆ 𝑂) | ||
Theorem | nosupfv 33680* | The value of surreal supremum when there is no maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆‘𝐺) = (𝑈‘𝐺)) | ||
Theorem | nosupres 33681* | A restriction law for surreal supremum when there is no maximum. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑈 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑆 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) | ||
Theorem | nosupbnd1lem1 33682* | Lemma for nosupbnd1 33688. Establish a soft upper bound. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ 𝑈 ∈ 𝐴) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆)) | ||
Theorem | nosupbnd1lem2 33683* | Lemma for nosupbnd1 33688. When there is no maximum, if any member of 𝐴 is a prolongment of 𝑆, then so are all elements of 𝐴 above it. (Contributed by Scott Fenton, 5-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ ((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆) | ||
Theorem | nosupbnd1lem3 33684* | Lemma for nosupbnd1 33688. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 2o. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o) | ||
Theorem | nosupbnd1lem4 33685* | Lemma for nosupbnd1 33688. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not undefined. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅) | ||
Theorem | nosupbnd1lem5 33686* | Lemma for nosupbnd1 33688. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 1o. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o) | ||
Theorem | nosupbnd1lem6 33687* | Lemma for nosupbnd1 33688. Establish a hard upper bound when there is no maximum. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ 𝑈 ∈ 𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆) | ||
Theorem | nosupbnd1 33688* | Bounding law from below for the surreal supremum. Proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑈 ∈ 𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆) | ||
Theorem | nosupbnd2lem1 33689* | Bounding law from above when a set of surreals has a maximum. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) | ||
Theorem | nosupbnd2 33690* | Bounding law from above for the surreal supremum. Proposition 4.3 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 ↔ ¬ (𝑍 ↾ dom 𝑆) <s 𝑆)) | ||
Theorem | noinfcbv 33691* | Change bound variables for surreal infimum. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ 𝑇 = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) | ||
Theorem | noinfno 33692* | The next several theorems deal with a surreal "infimum". This surreal will ultimately be shown to bound 𝐵 above and bound the restriction of any surreal below. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) → 𝑇 ∈ No ) | ||
Theorem | noinfdm 33693* | Next, we calculate the domain of 𝑇. This is mostly to change bound variables. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ (¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}) | ||
Theorem | noinfbday 33694* | Birthday bounding law for surreal infimum. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ (((𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑂 ∈ On ∧ ( bday “ 𝐵) ⊆ 𝑂)) → ( bday ‘𝑇) ⊆ 𝑂) | ||
Theorem | noinffv 33695* | The value of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇‘𝐺) = (𝑈‘𝐺)) | ||
Theorem | noinfres 33696* | The restriction of surreal infimum when there is no minimum. (Contributed by Scott Fenton, 8-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑈 <s 𝑣 → (𝑈 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))) → (𝑇 ↾ suc 𝐺) = (𝑈 ↾ suc 𝐺)) | ||
Theorem | noinfbnd1lem1 33697* | Lemma for noinfbnd1 33703. Establish a soft lower bound. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇) | ||
Theorem | noinfbnd1lem2 33698* | Lemma for noinfbnd1 33703. When there is no minimum, if any member of 𝐵 is a prolongment of 𝑇, then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇) | ||
Theorem | noinfbnd1lem3 33699* | Lemma for noinfbnd1 33703. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o) | ||
Theorem | noinfbnd1lem4 33700* | Lemma for noinfbnd1 33703. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) ⇒ ⊢ ((¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |