| Metamath
Proof Explorer Theorem List (p. 337 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fedgmullem1 33601* | Lemma for fedgmul 33603. (Contributed by Thierry Arnoux, 20-Jul-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) & ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ 𝐾 = (𝐸 ↾s 𝑉) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) & ⊢ 𝐷 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (𝑖(.r‘𝐸)𝑗)) & ⊢ 𝐻 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖)) & ⊢ (𝜑 → 𝑋 ∈ (LBasis‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (LBasis‘𝐵)) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝐿:𝑌⟶(Base‘(Scalar‘𝐵))) & ⊢ (𝜑 → 𝐿 finSupp (0g‘(Scalar‘𝐵))) & ⊢ (𝜑 → 𝑍 = (𝐵 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠 ‘𝐵)𝑗)))) & ⊢ (𝜑 → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) finSupp (0g‘(Scalar‘𝐶))) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐿‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠 ‘𝐶)𝑖)))) ⇒ ⊢ (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻 ∘f ( ·𝑠 ‘𝐴)𝐷)))) | ||
| Theorem | fedgmullem2 33602* | Lemma for fedgmul 33603. (Contributed by Thierry Arnoux, 20-Jul-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) & ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ 𝐾 = (𝐸 ↾s 𝑉) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) & ⊢ 𝐷 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (𝑖(.r‘𝐸)𝑗)) & ⊢ 𝐻 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖)) & ⊢ (𝜑 → 𝑋 ∈ (LBasis‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (LBasis‘𝐵)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋)))) & ⊢ (𝜑 → (𝐴 Σg (𝑊 ∘f ( ·𝑠 ‘𝐴)𝐷)) = (0g‘𝐴)) ⇒ ⊢ (𝜑 → 𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))})) | ||
| Theorem | fedgmul 33603 | The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) & ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ 𝐾 = (𝐸 ↾s 𝑉) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) ⇒ ⊢ (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶))) | ||
| Theorem | dimlssid 33604 | If the dimension of a linear subspace 𝐿 is the dimension of the whole vector space 𝐸, then 𝐿 is the whole space. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ LVec) & ⊢ (𝜑 → (dim‘𝐸) ∈ ℕ0) & ⊢ (𝜑 → 𝐿 ∈ (LSubSp‘𝐸)) & ⊢ (𝜑 → (dim‘(𝐸 ↾s 𝐿)) = (dim‘𝐸)) ⇒ ⊢ (𝜑 → 𝐿 = 𝐵) | ||
| Theorem | lvecendof1f1o 33605 | If an endomorphism 𝑈 of a vector space 𝐸 of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in [BourbakiAlg1] p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ LVec) & ⊢ (𝜑 → (dim‘𝐸) ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ (𝐸 LMHom 𝐸)) & ⊢ (𝜑 → 𝑈:𝐵–1-1→𝐵) ⇒ ⊢ (𝜑 → 𝑈:𝐵–1-1-onto→𝐵) | ||
| Theorem | lactlmhm 33606* | In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20215. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ AssAlg) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) | ||
| Theorem | assalactf1o 33607* | In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33606. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) & ⊢ (𝜑 → 𝐴 ∈ AssAlg) & ⊢ 𝐸 = (RLReg‘𝐴) & ⊢ 𝐾 = (Scalar‘𝐴) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) | ||
| Theorem | assarrginv 33608 | If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐸 = (RLReg‘𝐴) & ⊢ 𝑈 = (Unit‘𝐴) & ⊢ 𝐾 = (Scalar‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ AssAlg) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑈) | ||
| Theorem | assafld 33609 | If an algebra 𝐴 of finite degree over a division ring 𝐾 is an integral domain, then it is a field. Corollary of Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐾 = (Scalar‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ AssAlg) & ⊢ (𝜑 → 𝐴 ∈ IDomn) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ Field) | ||
| Syntax | cfldext 33610 | Syntax for the field extension relation. |
| class /FldExt | ||
| Syntax | cfinext 33611 | Syntax for the finite field extension relation. |
| class /FinExt | ||
| Syntax | cextdg 33612 | Syntax for the field extension degree operation. |
| class [:] | ||
| Definition | df-fldext 33613* | Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | ||
| Definition | df-extdg 33614* | Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) | ||
| Definition | df-finext 33615* | Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | ||
| Theorem | relfldext 33616 | The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ Rel /FldExt | ||
| Theorem | brfldext 33617 | The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | ||
| Theorem | ccfldextrr 33618 | The field of the complex numbers is an extension of the field of the real numbers. (Contributed by Thierry Arnoux, 20-Jul-2023.) |
| ⊢ ℂfld/FldExtℝfld | ||
| Theorem | fldextfld1 33619 | A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | ||
| Theorem | fldextfld2 33620 | A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | ||
| Theorem | fldextsubrg 33621 | Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ 𝑈 = (Base‘𝐹) ⇒ ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) | ||
| Theorem | sdrgfldext 33622 | A field 𝐸 and any sub-division-ring 𝐹 of 𝐸 form a field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) ⇒ ⊢ (𝜑 → 𝐸/FldExt(𝐸 ↾s 𝐹)) | ||
| Theorem | fldextress 33623 | Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | ||
| Theorem | brfinext 33624 | The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) | ||
| Theorem | extdgval 33625 | Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | ||
| Theorem | fldextsdrg 33626 | Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐸/FldExt𝐹) ⇒ ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) | ||
| Theorem | fldextsralvec 33627 | The subring algebra associated with a field extension is a vector space. (Contributed by Thierry Arnoux, 3-Aug-2023.) |
| ⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) | ||
| Theorem | extdgcl 33628 | Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*) | ||
| Theorem | extdggt0 33629 | Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) | ||
| Theorem | fldexttr 33630 | Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | ||
| Theorem | fldextid 33631 | The field extension relation is reflexive. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ (𝐹 ∈ Field → 𝐹/FldExt𝐹) | ||
| Theorem | extdgid 33632 | A trivial field extension has degree one. (Contributed by Thierry Arnoux, 4-Aug-2023.) |
| ⊢ (𝐸 ∈ Field → (𝐸[:]𝐸) = 1) | ||
| Theorem | fldsdrgfldext 33633 | A sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐺 = (𝐹 ↾s 𝐴) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝐹)) ⇒ ⊢ (𝜑 → 𝐹/FldExt𝐺) | ||
| Theorem | fldsdrgfldext2 33634 | A sub-sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐺 = (𝐹 ↾s 𝐴) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝐹)) & ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐺)) & ⊢ 𝐻 = (𝐹 ↾s 𝐵) ⇒ ⊢ (𝜑 → 𝐺/FldExt𝐻) | ||
| Theorem | extdgmul 33635 | The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) | ||
| Theorem | finexttrb 33636 | The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) | ||
| Theorem | extdg1id 33637 | If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.) |
| ⊢ ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹) | ||
| Theorem | extdg1b 33638 | The degree of the extension 𝐸/FldExt𝐹 is 1 iff 𝐸 and 𝐹 are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023.) |
| ⊢ (𝐸/FldExt𝐹 → ((𝐸[:]𝐹) = 1 ↔ 𝐸 = 𝐹)) | ||
| Theorem | fldgenfldext 33639 | A subfield 𝐹 extended with a set 𝐴 forms a field extension. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ 𝐴))) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐿/FldExt𝐾) | ||
| Theorem | fldextchr 33640 | The characteristic of a subfield is the same as the characteristic of the larger field. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ (𝐸/FldExt𝐹 → (chr‘𝐹) = (chr‘𝐸)) | ||
| Theorem | evls1fldgencl 33641 | Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴}))) | ||
| Theorem | ccfldsrarelvec 33642 | The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec | ||
| Theorem | ccfldextdgrr 33643 | The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ (ℂfld[:]ℝfld) = 2 | ||
| Theorem | fldextrspunlsplem 33644* | Lemma for fldextrspunlsp 33645: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ 𝑁 = (RingSpan‘𝐿) & ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) & ⊢ 𝐸 = (𝐿 ↾s 𝐶) & ⊢ (𝜑 → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑃:𝐻⟶𝐺) & ⊢ (𝜑 → 𝑃 finSupp (0g‘𝐿)) & ⊢ (𝜑 → 𝑋 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓)))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏))))) | ||
| Theorem | fldextrspunlsp 33645 | Lemma for fldextrspunfld 33647. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ 𝑁 = (RingSpan‘𝐿) & ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) & ⊢ 𝐸 = (𝐿 ↾s 𝐶) & ⊢ (𝜑 → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹))) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵)) | ||
| Theorem | fldextrspunlem1 33646 | Lemma for fldextrspunfld 33647. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝑁 = (RingSpan‘𝐿) & ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) & ⊢ 𝐸 = (𝐿 ↾s 𝐶) ⇒ ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) | ||
| Theorem | fldextrspunfld 33647 | The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝑁 = (RingSpan‘𝐿) & ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) & ⊢ 𝐸 = (𝐿 ↾s 𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ Field) | ||
| Theorem | fldextrspunlem2 33648 | Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝑁 = (RingSpan‘𝐿) & ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) & ⊢ 𝐸 = (𝐿 ↾s 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = (𝐿 fldGen (𝐺 ∪ 𝐻))) | ||
| Theorem | fldextrspundgle 33649 | Inequality involving the degree of two different field extensions 𝐼 and 𝐽 of a same field 𝐹. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) ⇒ ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) | ||
| Theorem | fldextrspundglemul 33650 | Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, 𝐽 / 𝐾 being finite, and the composiste field 𝐸 = 𝐼𝐽, the degree of the extension of the composite field 𝐸 / 𝐾 is at most the product of the field extension degrees of 𝐼 / 𝐾 and 𝐽 / 𝐾. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) ⇒ ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) | ||
| Theorem | fldextrspundgdvdslem 33651 | Lemma for fldextrspundgdvds 33652. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ0) | ||
| Theorem | fldextrspundgdvds 33652 | Given two finite extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, the degree of the extension 𝐼 / 𝐾 divides the degree of the extension 𝐸 / 𝐾, 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) & ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾)) | ||
| Theorem | fldext2rspun 33653* | Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾, 𝐼 / 𝐾 being a quadratic extension, and the degree of 𝐽 / 𝐾 being a power of 2, the degree of the extension 𝐸 / 𝐾 is a power of 2 , 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐾 = (𝐿 ↾s 𝐹) & ⊢ 𝐼 = (𝐿 ↾s 𝐺) & ⊢ 𝐽 = (𝐿 ↾s 𝐻) & ⊢ (𝜑 → 𝐿 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐼[:]𝐾) = 2) & ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) & ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) | ||
| Syntax | cirng 33654 | Integral subring of a ring. |
| class IntgRing | ||
| Definition | df-irng 33655* | Define the subring of elements of a ring 𝑟 integral over a subset 𝑠. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux, 28-Jan-2025.) |
| ⊢ IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) | ||
| Theorem | irngval 33656* | The elements of a field 𝑅 integral over a subset 𝑆. In the case of a subfield, those are the algebraic numbers over the field 𝑆 within the field 𝑅. That is, the numbers 𝑋 which are roots of monic polynomials 𝑃(𝑋) with coefficients in 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) | ||
| Theorem | elirng 33657* | Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) | ||
| Theorem | irngss 33658 | All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 33660). (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑆 ⊆ (𝑅 IntgRing 𝑆)) | ||
| Theorem | irngssv 33659 | An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) ⊆ 𝐵) | ||
| Theorem | 0ringirng 33660 | A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) | ||
| Theorem | irngnzply1lem 33661 | In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ 0 = (0g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝑃 ∈ dom 𝑂) & ⊢ (𝜑 → 𝑃 ≠ 𝑍) & ⊢ (𝜑 → ((𝑂‘𝑃)‘𝑋) = 0 ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐸 IntgRing 𝐹)) | ||
| Theorem | irngnzply1 33662* | In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ 0 = (0g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) ⇒ ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = ∪ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})(◡(𝑂‘𝑝) “ { 0 })) | ||
| Syntax | calgext 33663 | Syntax for the algebraic field extension relation. |
| class /AlgExt | ||
| Definition | df-algext 33664* | Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| ⊢ /AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))} | ||
| Syntax | cminply 33665 | Extend class notation with the minimal polynomial builder function. |
| class minPoly | ||
| Definition | df-minply 33666* | Define the minimal polynomial builder function. (Contributed by Thierry Arnoux, 19-Jan-2025.) |
| ⊢ minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒 ↾s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)}))) | ||
| Theorem | ply1annidllem 33667* | Write the set 𝑄 of polynomials annihilating an element 𝐴 as the kernel of the ring homomorphism 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑄 = (◡𝐹 “ { 0 })) | ||
| Theorem | ply1annidl 33668* | The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ⇒ ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) | ||
| Theorem | ply1annnr 33669* | The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑄 ≠ 𝑈) | ||
| Theorem | ply1annig1p 33670* | The ideal 𝑄 of polynomials annihilating an element 𝐴 is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) | ||
| Theorem | minplyval 33671* | Expand the value of the minimal polynomial (𝑀‘𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33670, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = (𝐺‘𝑄)) | ||
| Theorem | minplycl 33672* | The minimal polynomial is a polynomial. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘𝑃)) | ||
| Theorem | ply1annprmidl 33673* | The set 𝑄 of polynomials annihilating an element 𝐴 is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ⇒ ⊢ (𝜑 → 𝑄 ∈ (PrmIdeal‘𝑃)) | ||
| Theorem | minplymindeg 33674 | The minimal polynomial of 𝐴 is minimal among the nonzero annihilators of 𝐴 with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝐷 = (deg1‘(𝐸 ↾s 𝐹)) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → ((𝑂‘𝐻)‘𝐴) = 0 ) & ⊢ (𝜑 → 𝐻 ∈ 𝑈) & ⊢ (𝜑 → 𝐻 ≠ 𝑍) ⇒ ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ≤ (𝐷‘𝐻)) | ||
| Theorem | minplyann 33675 | The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) | ||
| Theorem | minplyirredlem 33676 | Lemma for minplyirred 33677. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) & ⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) & ⊢ (𝜑 → 𝐻 ∈ (Base‘𝑃)) & ⊢ (𝜑 → (𝐺(.r‘𝑃)𝐻) = (𝑀‘𝐴)) & ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = (0g‘𝐸)) & ⊢ (𝜑 → 𝐺 ≠ 𝑍) & ⊢ (𝜑 → 𝐻 ≠ 𝑍) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Unit‘𝑃)) | ||
| Theorem | minplyirred 33677 | A nonzero minimal polynomial is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Irred‘𝑃)) | ||
| Theorem | irngnminplynz 33678 | Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) | ||
| Theorem | minplym1p 33679 | A minimal polynomial is monic. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) | ||
| Theorem | minplynzm1p 33680 | If a minimal polynomial is nonzero, then it is monic. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → (𝑀‘𝐴) ≠ 𝑍) & ⊢ 𝑈 = (Monic1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑈) | ||
| Theorem | minplyelirng 33681 | If the minimial polynomial 𝐹 of an element 𝑋 of a field 𝑅 has nonnegative degree, then 𝑋 is integral. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (𝑅 minPoly 𝑆) & ⊢ 𝐷 = (deg1‘(𝑅 ↾s 𝑆)) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑅 IntgRing 𝑆)) | ||
| Theorem | irredminply 33682 | An irreducible, monic, annihilating polynomial is the minimal polynomial. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
| ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ 𝑍 = (0g‘𝑃) & ⊢ (𝜑 → ((𝑂‘𝐺)‘𝐴) = 0 ) & ⊢ (𝜑 → 𝐺 ∈ (Irred‘𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (Monic1p‘(𝐸 ↾s 𝐹))) ⇒ ⊢ (𝜑 → 𝐺 = (𝑀‘𝐴)) | ||
| Theorem | algextdeglem1 33683 | Lemma for algextdeg 33691. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) | ||
| Theorem | algextdeglem2 33684* | Lemma for algextdeg 33691. Both the ring of polynomials 𝑃 and the field 𝐿 generated by 𝐾 and the algebraic element 𝐴 can be considered as modules over the elements of 𝐹. Then, the evaluation map 𝐺, mapping polynomials to their evaluation at 𝐴, is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 LMHom ((subringAlg ‘𝐿)‘𝐹))) | ||
| Theorem | algextdeglem3 33685* | Lemma for algextdeg 33691. The quotient 𝑃 / 𝑍 of the vector space 𝑃 of polynomials by the subspace 𝑍 of polynomials annihilating 𝐴 is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝑄 ∈ LVec) | ||
| Theorem | algextdeglem4 33686* | Lemma for algextdeg 33691. By lmhmqusker 33364, the surjective module homomorphism 𝐺 described in algextdeglem2 33684 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space 𝑃 / 𝑍 is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → (dim‘𝑄) = (𝐿[:]𝐾)) | ||
| Theorem | algextdeglem5 33687* | Lemma for algextdeg 33691. The subspace 𝑍 of annihilators of 𝐴 is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) ⇒ ⊢ (𝜑 → 𝑍 = ((RSpan‘𝑃)‘{(𝑀‘𝐴)})) | ||
| Theorem | algextdeglem6 33688* | Lemma for algextdeg 33691. By r1pquslmic 33552, the univariate polynomial remainder ring (𝐻 “s 𝑃) is isomorphic with the quotient ring 𝑄. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) ⇒ ⊢ (𝜑 → (dim‘𝑄) = (dim‘(𝐻 “s 𝑃))) | ||
| Theorem | algextdeglem7 33689* | Lemma for algextdeg 33691. The polynomials 𝑋 of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) & ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ (𝐻‘𝑋) = 𝑋)) | ||
| Theorem | algextdeglem8 33690* | Lemma for algextdeg 33691. The dimension of the univariate polynomial remainder ring (𝐻 “s 𝑃) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) & ⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐺 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝐴)) & ⊢ 𝑁 = (𝑥 ∈ 𝑈 ↦ [𝑥](𝑃 ~QG 𝑍)) & ⊢ 𝑍 = (◡𝐺 “ {(0g‘𝐿)}) & ⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)) & ⊢ 𝐽 = (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐺 “ 𝑝)) & ⊢ 𝑅 = (rem1p‘𝐾) & ⊢ 𝐻 = (𝑝 ∈ 𝑈 ↦ (𝑝𝑅(𝑀‘𝐴))) & ⊢ 𝑇 = (◡(deg1‘𝐾) “ (-∞[,)(𝐷‘(𝑀‘𝐴)))) ⇒ ⊢ (𝜑 → (dim‘(𝐻 “s 𝑃)) = (𝐷‘(𝑀‘𝐴))) | ||
| Theorem | algextdeg 33691 | The degree of an algebraic field extension (noted [𝐿:𝐾]) is the degree of the minimal polynomial 𝑀(𝐴), whereas 𝐿 is the field generated by 𝐾 and the algebraic element 𝐴. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) & ⊢ 𝐷 = (deg1‘𝐸) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) ⇒ ⊢ (𝜑 → (𝐿[:]𝐾) = (𝐷‘(𝑀‘𝐴))) | ||
| Theorem | rtelextdg2lem 33692 | Lemma for rtelextdg2 33693: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑉 = (Base‘𝐸) & ⊢ · = (.r‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ ↑ = (.g‘(mulGrp‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐹) & ⊢ (𝜑 → 𝐵 ∈ 𝐹) & ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) & ⊢ 𝑌 = (var1‘𝐾) & ⊢ ⊕ = (+g‘𝑃) & ⊢ ⊗ = (.r‘𝑃) & ⊢ ∧ = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐺 = ((2 ∧ 𝑌) ⊕ (((𝑈‘𝐴) ⊗ 𝑌) ⊕ (𝑈‘𝐵))) ⇒ ⊢ (𝜑 → (𝐿[:]𝐾) ≤ 2) | ||
| Theorem | rtelextdg2 33693 | If an element 𝑋 is a solution of a quadratic equation, then it is either in the base field, or the degree of its field extension is exactly 2. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| ⊢ 𝐾 = (𝐸 ↾s 𝐹) & ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝑋}))) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑃 = (Poly1‘𝐾) & ⊢ 𝑉 = (Base‘𝐸) & ⊢ · = (.r‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ ↑ = (.g‘(mulGrp‘𝐸)) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐹) & ⊢ (𝜑 → 𝐵 ∈ 𝐹) & ⊢ (𝜑 → ((2 ↑ 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐹 ∨ (𝐿[:]𝐾) = 2)) | ||
| Theorem | fldext2chn 33694* | In a non-empty chain 𝑇 of quadratic field extensions, the degree of the final extension is always a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝐸 = (𝑊 ↾s 𝑒) & ⊢ 𝐹 = (𝑊 ↾s 𝑓) & ⊢ < = {〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} & ⊢ (𝜑 → 𝑇 ∈ ( < Chain(SubDRing‘𝑊))) & ⊢ (𝜑 → 𝑊 ∈ Field) & ⊢ (𝜑 → (𝑊 ↾s (𝑇‘0)) = 𝑄) & ⊢ (𝜑 → (𝑊 ↾s (lastS‘𝑇)) = 𝐿) & ⊢ (𝜑 → 0 < (♯‘𝑇)) ⇒ ⊢ (𝜑 → (𝐿/FldExt𝑄 ∧ ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))) | ||
This section defines the set of constructible points as complex numbers which can be drawn starting from two points (we take 0 and 1), and taking intersections of circles and lines. This construction is useful for proving the impossibility of doubling the cube (2sqr3nconstr 33747), and of angle trisection (cos9thpinconstr 33757) | ||
| Syntax | cconstr 33695 | Extend class notation with the set of constructible points. |
| class Constr | ||
| Definition | df-constr 33696* | Define the set of geometrically constructible points, by recursively adding the line-line, line-circle and circle-circle intersections constructions using points in a previous iteration. Definition 7.4. in [Stewart] p. 92 (Contributed by Saveliy Skresanov, 19-Jan-2025.) |
| ⊢ Constr = ∪ (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) “ ω) | ||
| Theorem | constrrtll 33697 | In the construction of constructible numbers, line-line intersections are solutions of linear equations, and can therefore be completely constructed. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → 𝑋 = (𝐶 + (𝑅 · (𝐷 − 𝐶)))) & ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐶))) ≠ 0) & ⊢ 𝑁 = (𝐴 + (((((𝐴 − 𝐶) · ((∗‘𝐷) − (∗‘𝐶))) − (((∗‘𝐴) − (∗‘𝐶)) · (𝐷 − 𝐶))) / ((((∗‘𝐵) − (∗‘𝐴)) · (𝐷 − 𝐶)) − ((𝐵 − 𝐴) · ((∗‘𝐷) − (∗‘𝐶))))) · (𝐵 − 𝐴))) ⇒ ⊢ (𝜑 → 𝑋 = 𝑁) | ||
| Theorem | constrrtlc1 33698 | In the construction of constructible numbers, line-circle intersections are roots of a quadratic equation, non-degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑄 = (((∗‘𝐵) − (∗‘𝐴)) / (𝐵 − 𝐴)) & ⊢ 𝑀 = (((((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶)) − (𝐶 · 𝑄)) / 𝑄) & ⊢ 𝑁 = (-((𝐶 · (((∗‘𝐴) − (𝐴 · 𝑄)) − (∗‘𝐶))) + ((𝐸 − 𝐹) · ((∗‘𝐸) − (∗‘𝐹)))) / 𝑄) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0 ∧ 𝑄 ≠ 0)) | ||
| Theorem | constrrtlc2 33699 | In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝐴) | ||
| Theorem | constrrtcclem 33700 | In the construction of constructible numbers, circle-circle intersections are roots of a quadratic equation. Case of non-degenerate circles. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ∈ 𝑆) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐶))) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) & ⊢ 𝑃 = ((𝐵 − 𝐶) · (∗‘(𝐵 − 𝐶))) & ⊢ 𝑄 = ((𝐸 − 𝐹) · (∗‘(𝐸 − 𝐹))) & ⊢ 𝑀 = (((𝑄 − ((∗‘𝐷) · (𝐷 + 𝐴))) − (𝑃 − ((∗‘𝐴) · (𝐷 + 𝐴)))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ 𝑁 = -(((((∗‘𝐴) · (𝐷 · 𝐴)) − (𝑃 · 𝐷)) − (((∗‘𝐷) · (𝐷 · 𝐴)) − (𝑄 · 𝐴))) / ((∗‘𝐷) − (∗‘𝐴))) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋↑2) + ((𝑀 · 𝑋) + 𝑁)) = 0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |