![]() |
Metamath
Proof Explorer Theorem List (p. 337 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30159) |
![]() (30160-31682) |
![]() (31683-47806) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fdvneggt 33601* | Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ < π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β ((β D πΉ)βπ₯) < 0) β β’ (π β (πΉβπ΅) < (πΉβπ΄)) | ||
Theorem | fdvposle 33602* | Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ β€ π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β 0 β€ ((β D πΉ)βπ₯)) β β’ (π β (πΉβπ΄) β€ (πΉβπ΅)) | ||
Theorem | fdvnegge 33603* | Functions with a nonpositive derivative, i.e., decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ πΈ = (πΆ(,)π·) & β’ (π β π΄ β πΈ) & β’ (π β π΅ β πΈ) & β’ (π β πΉ:πΈβΆβ) & β’ (π β (β D πΉ) β (πΈβcnββ)) & β’ (π β π΄ β€ π΅) & β’ ((π β§ π₯ β (π΄(,)π΅)) β ((β D πΉ)βπ₯) β€ 0) β β’ (π β (πΉβπ΅) β€ (πΉβπ΄)) | ||
Theorem | prodfzo03 33604* | A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π = 0 β π· = π΄) & β’ (π = 1 β π· = π΅) & β’ (π = 2 β π· = πΆ) & β’ ((π β§ π β (0..^3)) β π· β β) β β’ (π β βπ β (0..^3)π· = (π΄ Β· (π΅ Β· πΆ))) | ||
Theorem | actfunsnf1o 33605* | The action πΉ of extending function from π΅ to πΆ with new values at point πΌ is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
β’ ((π β§ π β πΆ) β π΄ β (πΆ βm π΅)) & β’ (π β πΆ β V) & β’ (π β πΌ β π) & β’ (π β Β¬ πΌ β π΅) & β’ πΉ = (π₯ β π΄ β¦ (π₯ βͺ {β¨πΌ, πβ©})) β β’ ((π β§ π β πΆ) β πΉ:π΄β1-1-ontoβran πΉ) | ||
Theorem | actfunsnrndisj 33606* | The action πΉ of extending function from π΅ to πΆ with new values at point πΌ yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.) |
β’ ((π β§ π β πΆ) β π΄ β (πΆ βm π΅)) & β’ (π β πΆ β V) & β’ (π β πΌ β π) & β’ (π β Β¬ πΌ β π΅) & β’ πΉ = (π₯ β π΄ β¦ (π₯ βͺ {β¨πΌ, πβ©})) β β’ (π β Disj π β πΆ ran πΉ) | ||
Theorem | itgexpif 33607* | The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
β’ (π β β€ β β«(0(,)1)(expβ((i Β· (2 Β· Ο)) Β· (π Β· π₯))) dπ₯ = if(π = 0, 1, 0)) | ||
Theorem | fsum2dsub 33608* | Lemma for breprexp 33634- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π = (π β π) β π΄ = π΅) & β’ ((π β§ π β (β€β₯β-π) β§ π β (1...π)) β π΄ β β) & β’ (((π β§ π β (1...π)) β§ π β (((π + π) + 1)...(π + π))) β π΅ = 0) & β’ (((π β§ π β (1...π)) β§ π β (0..^π)) β π΅ = 0) β β’ (π β Ξ£π β (0...π)Ξ£π β (1...π)π΄ = Ξ£π β (0...(π + π))Ξ£π β (1...π)π΅) | ||
Syntax | crepr 33609 | Representations of a number as a sum of nonnegative integers. |
class repr | ||
Definition | df-repr 33610* | The representations of a nonnegative π as the sum of π nonnegative integers from a set π. Cf. Definition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ repr = (π β β0 β¦ (π β π« β, π β β€ β¦ {π β (π βm (0..^π )) β£ Ξ£π β (0..^π )(πβπ) = π})) | ||
Theorem | reprval 33611* | Value of the representations of π as the sum of π nonnegative integers in a given set π΄. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) β β’ (π β (π΄(reprβπ)π) = {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π}) | ||
Theorem | repr0 33612 | There is exactly one representation with no elements (an empty sum), only for π = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) β β’ (π β (π΄(reprβ0)π) = if(π = 0, {β }, β )) | ||
Theorem | reprf 33613 | Members of the representation of π as the sum of π nonnegative integers from set π΄ as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β πΆ β (π΄(reprβπ)π)) β β’ (π β πΆ:(0..^π)βΆπ΄) | ||
Theorem | reprsum 33614* | Sums of values of the members of the representation of π equal π. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β πΆ β (π΄(reprβπ)π)) β β’ (π β Ξ£π β (0..^π)(πΆβπ) = π) | ||
Theorem | reprle 33615 | Upper bound to the terms in the representations of π as the sum of π nonnegative integers from set π΄. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β πΆ β (π΄(reprβπ)π)) & β’ (π β π β (0..^π)) β β’ (π β (πΆβπ) β€ π) | ||
Theorem | reprsuc 33616* | Express the representations recursively. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ πΉ = (π β (π΄(reprβπ)(π β π)) β¦ (π βͺ {β¨π, πβ©})) β β’ (π β (π΄(reprβ(π + 1))π) = βͺ π β π΄ ran πΉ) | ||
Theorem | reprfi 33617 | Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π΄ β Fin) β β’ (π β (π΄(reprβπ)π) β Fin) | ||
Theorem | reprss 33618 | Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π΅ β π΄) β β’ (π β (π΅(reprβπ)π) β (π΄(reprβπ)π)) | ||
Theorem | reprinrn 33619* | Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) β β’ (π β (π β ((π΄ β© π΅)(reprβπ)π) β (π β (π΄(reprβπ)π) β§ ran π β π΅))) | ||
Theorem | reprlt 33620 | There are no representations of π with more than π terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π < π) β β’ (π β (π΄(reprβπ)π) = β ) | ||
Theorem | hashreprin 33621* | Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β π΅ β Fin) & β’ (π β π΅ β β) β β’ (π β (β―β((π΄ β© π΅)(reprβπ)π)) = Ξ£π β (π΅(reprβπ)π)βπ β (0..^π)(((πββ)βπ΄)β(πβπ))) | ||
Theorem | reprgt 33622 | There are no representations of more than (π Β· π) with only π terms bounded by π. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π΄ β (1...π)) & β’ (π β π β β€) & β’ (π β π β β0) & β’ (π β (π Β· π) < π) β β’ (π β (π΄(reprβπ)π) = β ) | ||
Theorem | reprinfz1 33623 | For the representation of π, it is sufficient to consider nonnegative integers up to π. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π΄ β β) β β’ (π β (π΄(reprβπ)π) = ((π΄ β© (1...π))(reprβπ)π)) | ||
Theorem | reprfi2 33624 | Corollary of reprinfz1 33623. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π΄ β β) β β’ (π β (π΄(reprβπ)π) β Fin) | ||
Theorem | reprfz1 33625 | Corollary of reprinfz1 33623. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) β β’ (π β (β(reprβπ)π) = ((1...π)(reprβπ)π)) | ||
Theorem | hashrepr 33626* | Develop the number of representations of an integer π as a sum of nonnegative integers in set π΄. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π β π΄ β β) & β’ (π β π β β0) & β’ (π β π β β0) β β’ (π β (β―β(π΄(reprβπ)π)) = Ξ£π β (β(reprβπ)π)βπ β (0..^π)(((πββ)βπ΄)β(πβπ))) | ||
Theorem | reprpmtf1o 33627* | Transposing 0 and π maps representations with a condition on the first index to transpositions with the same condition on the index π. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ (π β π β β) & β’ (π β π β β€) & β’ (π β π΄ β β) & β’ (π β π β (0..^π)) & β’ π = {π β (π΄(reprβπ)π) β£ Β¬ (πβ0) β π΅} & β’ π = {π β (π΄(reprβπ)π) β£ Β¬ (πβπ) β π΅} & β’ π = if(π = 0, ( I βΎ (0..^π)), ((pmTrspβ(0..^π))β{π, 0})) & β’ πΉ = (π β π β¦ (π β π)) β β’ (π β πΉ:πβ1-1-ontoβπ) | ||
Theorem | reprdifc 33628* | Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ πΆ = {π β (π΄(reprβπ)π) β£ Β¬ (πβπ₯) β π΅} & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β0) & β’ (π β π β β0) β β’ (π β ((π΄(reprβπ)π) β (π΅(reprβπ)π)) = βͺ π₯ β (0..^π)πΆ) | ||
Theorem | chpvalz 33629* | Value of the second Chebyshev function, or summatory of the von Mangoldt function. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ (π β β€ β (Οβπ) = Ξ£π β (1...π)(Ξβπ)) | ||
Theorem | chtvalz 33630* | Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ (π β β€ β (ΞΈβπ) = Ξ£π β ((1...π) β© β)(logβπ)) | ||
Theorem | breprexplema 33631* | Lemma for breprexp 33634 (induction step for weighted sums over representations). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β€ ((π + 1) Β· π)) & β’ (((π β§ π₯ β (0..^(π + 1))) β§ π¦ β β) β ((πΏβπ₯)βπ¦) β β) β β’ (π β Ξ£π β ((1...π)(reprβ(π + 1))π)βπ β (0..^(π + 1))((πΏβπ)β(πβπ)) = Ξ£π β (1...π)Ξ£π β ((1...π)(reprβπ)(π β π))(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· ((πΏβπ)βπ))) | ||
Theorem | breprexplemb 33632 | Lemma for breprexp 33634 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) & β’ (π β π β (0..^π)) & β’ (π β π β β) β β’ (π β ((πΏβπ)βπ) β β) | ||
Theorem | breprexplemc 33633* | Lemma for breprexp 33634 (induction step). (Contributed by Thierry Arnoux, 6-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) & β’ (π β π β β0) & β’ (π β (π + 1) β€ π) & β’ (π β βπ β (0..^π)Ξ£π β (1...π)(((πΏβπ)βπ) Β· (πβπ)) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (πβπ))) β β’ (π β βπ β (0..^(π + 1))Ξ£π β (1...π)(((πΏβπ)βπ) Β· (πβπ)) = Ξ£π β (0...((π + 1) Β· π))Ξ£π β ((1...π)(reprβ(π + 1))π)(βπ β (0..^(π + 1))((πΏβπ)β(πβπ)) Β· (πβπ))) | ||
Theorem | breprexp 33634* | Express the π th power of the finite series in terms of the number of representations of integers π as sums of π terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in πΏ. See breprexpnat 33635 for the simple case presented in the proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) β β’ (π β βπ β (0..^π)Ξ£π β (1...π)(((πΏβπ)βπ) Β· (πβπ)) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (πβπ))) | ||
Theorem | breprexpnat 33635* | Express the π th power of the finite series in terms of the number of representations of integers π as sums of π terms of elements of π΄, bounded by π. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ π = Ξ£π β (π΄ β© (1...π))(πβπ) & β’ π = (β―β((π΄ β© (1...π))(reprβπ)π)) β β’ (π β (πβπ) = Ξ£π β (0...(π Β· π))(π Β· (πβπ))) | ||
Syntax | cvts 33636 | The Vinogradov trigonometric sums. |
class vts | ||
Definition | df-vts 33637* | Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ vts = (π β (β βm β), π β β0 β¦ (π₯ β β β¦ Ξ£π β (1...π)((πβπ) Β· (expβ((i Β· (2 Β· Ο)) Β· (π Β· π₯)))))) | ||
Theorem | vtsval 33638* | Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:ββΆβ) β β’ (π β ((πΏvtsπ)βπ) = Ξ£π β (1...π)((πΏβπ) Β· (expβ((i Β· (2 Β· Ο)) Β· (π Β· π))))) | ||
Theorem | vtscl 33639 | Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:ββΆβ) β β’ (π β ((πΏvtsπ)βπ) β β) | ||
Theorem | vtsprod 33640* | Express the Vinogradov trigonometric sums to the power of π (Contributed by Thierry Arnoux, 12-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β π β β0) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) β β’ (π β βπ β (0..^π)(((πΏβπ)vtsπ)βπ) = Ξ£π β (0...(π Β· π))Ξ£π β ((1...π)(reprβπ)π)(βπ β (0..^π)((πΏβπ)β(πβπ)) Β· (expβ((i Β· (2 Β· Ο)) Β· (π Β· π))))) | ||
Theorem | circlemeth 33641* | The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ (π β π β β0) & β’ (π β π β β) & β’ (π β πΏ:(0..^π)βΆ(β βm β)) β β’ (π β Ξ£π β (β(reprβπ)π)βπ β (0..^π)((πΏβπ)β(πβπ)) = β«(0(,)1)(βπ β (0..^π)(((πΏβπ)vtsπ)βπ₯) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | ||
Theorem | circlemethnat 33642* | The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses π , the number of different ways a nonnegative integer π can be represented as the sum of at most π integers in the set π΄ as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ π = (β―β(π΄(reprβπ)π)) & β’ πΉ = ((((πββ)βπ΄)vtsπ)βπ₯) & β’ π β β0 & β’ π΄ β β & β’ π β β β β’ π = β«(0(,)1)((πΉβπ) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯ | ||
Theorem | circlevma 33643* | The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
β’ (π β π β β0) β β’ (π β Ξ£π β (β(reprβ3)π)((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))) = β«(0(,)1)((((Ξvtsπ)βπ₯)β3) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | ||
Theorem | circlemethhgt 33644* | The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions π» and πΎ. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
β’ (π β π»:ββΆβ) & β’ (π β πΎ:ββΆβ) & β’ (π β π β β0) β β’ (π β Ξ£π β (β(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) = β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) | ||
Axiom | ax-hgt749 33645* | Statement 7.49 of [Helfgott] p. 70. For a sufficiently big odd π, this postulates the existence of smoothing functions β (eta star) and π (eta plus) such that the lower bound for the circle integral is big enough. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ βπ β {π§ β β€ β£ Β¬ 2 β₯ π§} ((;10β;27) β€ π β ββ β ((0[,)+β) βm β)βπ β ((0[,)+β) βm β)(βπ β β (πβπ) β€ (1._0_7_9_9_55) β§ βπ β β (ββπ) β€ (1._4_14) β§ ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· β)vtsπ)βπ₯) Β· ((((Ξ βf Β· π)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯)) | ||
Axiom | ax-ros335 33646 | Theorem 12. of [RosserSchoenfeld] p. 71. Theorem chpo1ubb 26974 states that the Ο function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ βπ₯ β β+ (Οβπ₯) < ((1._0_3_8_83) Β· π₯) | ||
Axiom | ax-ros336 33647 | Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 26972 states that the Ο and ΞΈ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ βπ₯ β β+ ((Οβπ₯) β (ΞΈβπ₯)) < ((1._4_2_62) Β· (ββπ₯)) | ||
Theorem | hgt750lemc 33648* | An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
β’ (π β π β β) β β’ (π β Ξ£π β (1...π)(Ξβπ) < ((1._0_3_8_83) Β· π)) | ||
Theorem | hgt750lemd 33649* | An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
β’ (π β π β β) & β’ (π β (;10β;27) β€ π) β β’ (π β Ξ£π β (((1...π) β β) βͺ {2})(Ξβπ) < ((1._4_2_63) Β· (ββπ))) | ||
Theorem | hgt749d 33650* | A deduction version of ax-hgt749 33645. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) β β’ (π β ββ β ((0[,)+β) βm β)βπ β ((0[,)+β) βm β)(βπ β β (πβπ) β€ (1._0_7_9_9_55) β§ βπ β β (ββπ) β€ (1._4_14) β§ ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· β)vtsπ)βπ₯) Β· ((((Ξ βf Β· π)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯)) | ||
Theorem | logdivsqrle 33651 | Conditions for ((log x ) / ( sqrt π₯)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) & β’ (π β (expβ2) β€ π΄) & β’ (π β π΄ β€ π΅) β β’ (π β ((logβπ΅) / (ββπ΅)) β€ ((logβπ΄) / (ββπ΄))) | ||
Theorem | hgt750lem 33652 | Lemma for tgoldbachgtd 33663. (Contributed by Thierry Arnoux, 17-Dec-2021.) |
β’ ((π β β0 β§ (;10β;27) β€ π) β ((7._3_48) Β· ((logβπ) / (ββπ))) < (0._0_0_0_4_2_2_48)) | ||
Theorem | hgt750lem2 33653 | Decimal multiplication galore! (Contributed by Thierry Arnoux, 26-Dec-2021.) |
β’ (3 Β· ((((1._0_7_9_9_55)β2) Β· (1._4_14)) Β· ((1._4_2_63) Β· (1._0_3_8_83)))) < (7._3_48) | ||
Theorem | hgt750lemf 33654* | Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ (π β π΄ β Fin) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β π΄) β (πβ0) β β) & β’ ((π β§ π β π΄) β (πβ1) β β) & β’ ((π β§ π β π΄) β (πβ2) β β) & β’ ((π β§ π β β) β (πΎβπ) β€ π) & β’ ((π β§ π β β) β (π»βπ) β€ π) β β’ (π β Ξ£π β π΄ (((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) β€ (((πβ2) Β· π) Β· Ξ£π β π΄ ((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))))) | ||
Theorem | hgt750lemg 33655* | Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation π to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ πΉ = (π β π β¦ (π β π)) & β’ (π β π:(0..^3)β1-1-ontoβ(0..^3)) & β’ (π β π:(0..^3)βΆβ) & β’ (π β πΏ:ββΆβ) & β’ (π β π β π ) β β’ (π β ((πΏβ((πΉβπ)β0)) Β· ((πΏβ((πΉβπ)β1)) Β· (πΏβ((πΉβπ)β2)))) = ((πΏβ(πβ0)) Β· ((πΏβ(πβ1)) Β· (πΏβ(πβ2))))) | ||
Theorem | oddprm2 33656* | Two ways to write the set of odd primes. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} β β’ (β β {2}) = (π β© β) | ||
Theorem | hgt750lemb 33657* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β β) & β’ (π β 2 β€ π) & β’ π΄ = {π β (β(reprβ3)π) β£ Β¬ (πβ0) β (π β© β)} β β’ (π β Ξ£π β π΄ ((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))) β€ ((logβπ) Β· (Ξ£π β (((1...π) β β) βͺ {2})(Ξβπ) Β· Ξ£π β (1...π)(Ξβπ)))) | ||
Theorem | hgt750lema 33658* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β β) & β’ (π β 2 β€ π) & β’ π΄ = {π β (β(reprβ3)π) β£ Β¬ (πβ0) β (π β© β)} & β’ πΉ = (π β {π β (β(reprβ3)π) β£ Β¬ (πβπ) β (π β© β)} β¦ (π β if(π = 0, ( I βΎ (0..^3)), ((pmTrspβ(0..^3))β{π, 0})))) β β’ (π β Ξ£π β ((β(reprβ3)π) β ((π β© β)(reprβ3)π))((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))) β€ (3 Β· Ξ£π β π΄ ((Ξβ(πβ0)) Β· ((Ξβ(πβ1)) Β· (Ξβ(πβ2)))))) | ||
Theorem | hgt750leme 33659* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β β) & β’ (π β (;10β;27) β€ π) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) & β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) β β’ (π β Ξ£π β ((β(reprβ3)π) β ((π β© β)(reprβ3)π))(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2))))) β€ (((7._3_48) Β· ((logβπ) / (ββπ))) Β· (πβ2))) | ||
Theorem | tgoldbachgnn 33660* | Lemma for tgoldbachgtd 33663. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) β β’ (π β π β β) | ||
Theorem | tgoldbachgtde 33661* | Lemma for tgoldbachgtd 33663. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) & β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) & β’ (π β ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) β β’ (π β 0 < Ξ£π β ((π β© β)(reprβ3)π)(((Ξβ(πβ0)) Β· (π»β(πβ0))) Β· (((Ξβ(πβ1)) Β· (πΎβ(πβ1))) Β· ((Ξβ(πβ2)) Β· (πΎβ(πβ2)))))) | ||
Theorem | tgoldbachgtda 33662* | Lemma for tgoldbachgtd 33663. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) & β’ (π β π»:ββΆ(0[,)+β)) & β’ (π β πΎ:ββΆ(0[,)+β)) & β’ ((π β§ π β β) β (πΎβπ) β€ (1._0_7_9_9_55)) & β’ ((π β§ π β β) β (π»βπ) β€ (1._4_14)) & β’ (π β ((0._0_0_0_4_2_2_48) Β· (πβ2)) β€ β«(0(,)1)(((((Ξ βf Β· π»)vtsπ)βπ₯) Β· ((((Ξ βf Β· πΎ)vtsπ)βπ₯)β2)) Β· (expβ((i Β· (2 Β· Ο)) Β· (-π Β· π₯)))) dπ₯) β β’ (π β 0 < (β―β((π β© β)(reprβ3)π))) | ||
Theorem | tgoldbachgtd 33663* | Odd integers greater than (;10β;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ (π β π β π) & β’ (π β (;10β;27) β€ π) β β’ (π β 0 < (β―β((π β© β)(reprβ3)π))) | ||
Theorem | tgoldbachgt 33664* | Odd integers greater than (;10β;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set πΊ of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
β’ π = {π§ β β€ β£ Β¬ 2 β₯ π§} & β’ πΊ = {π§ β π β£ βπ β β βπ β β βπ β β ((π β π β§ π β π β§ π β π) β§ π§ = ((π + π) + π))} β β’ βπ β β (π β€ (;10β;27) β§ βπ β π (π < π β π β πΊ)) | ||
This definition has been superseded by DimTarskiGβ₯ and is no longer needed in the main part of set.mm. It is only kept here for reference. | ||
Syntax | cstrkg2d 33665 | Extends class notation with the class of geometries fulfilling the planarity axioms. |
class TarskiG2D | ||
Definition | df-trkg2d 33666* | Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of [Schwabhauser] p. 12, and the upper dimension axiom, Axiom A9 of [Schwabhauser] p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019.) (New usage is discouraged.) |
β’ TarskiG2D = {π β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))} | ||
Theorem | istrkg2d 33667* | Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) β β’ (πΊ β TarskiG2D β (πΊ β V β§ (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) | ||
Theorem | axtglowdim2ALTV 33668* | Alternate version of axtglowdim2 27711. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG2D) β β’ (π β βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) | ||
Theorem | axtgupdim2ALTV 33669 | Alternate version of axtgupdim2 27712. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β π) = (π β π)) & β’ (π β (π β π) = (π β π)) & β’ (π β (π β π) = (π β π)) & β’ (π β πΊ β TarskiG2D) β β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) | ||
Syntax | cafs 33670 | Declare the syntax for the outer five segment configuration. |
class AFS | ||
Definition | df-afs 33671* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (axtg5seg 27706). See df-ofs 34944. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) (Revised by Thierry Arnoux, 15-Mar-2019.) |
β’ AFS = (π β TarskiG β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / β][(Itvβπ) / π]βπ β π βπ β π βπ β π βπ β π βπ₯ β π βπ¦ β π βπ§ β π βπ€ β π (π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π β (πππ) β§ π¦ β (π₯ππ§)) β§ ((πβπ) = (π₯βπ¦) β§ (πβπ) = (π¦βπ§)) β§ ((πβπ) = (π₯βπ€) β§ (πβπ) = (π¦βπ€))))}) | ||
Theorem | afsval 33672* | Value of the AFS relation for a given geometry structure. (Contributed by Thierry Arnoux, 20-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) β β’ (π β (AFSβπΊ) = {β¨π, πβ© β£ βπ β π βπ β π βπ β π βπ β π βπ₯ β π βπ¦ β π βπ§ β π βπ€ β π (π = β¨β¨π, πβ©, β¨π, πβ©β© β§ π = β¨β¨π₯, π¦β©, β¨π§, π€β©β© β§ ((π β (ππΌπ) β§ π¦ β (π₯πΌπ§)) β§ ((π β π) = (π₯ β π¦) β§ (π β π) = (π¦ β π§)) β§ ((π β π) = (π₯ β π€) β§ (π β π) = (π¦ β π€))))}) | ||
Theorem | brafs 33673 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ π = (AFSβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (β¨β¨π΄, π΅β©, β¨πΆ, π·β©β©πβ¨β¨π, πβ©, β¨π, πβ©β© β ((π΅ β (π΄πΌπΆ) β§ π β (ππΌπ)) β§ ((π΄ β π΅) = (π β π) β§ (π΅ β πΆ) = (π β π)) β§ ((π΄ β π·) = (π β π) β§ (π΅ β π·) = (π β π))))) | ||
Theorem | tg5segofs 33674 | Rephrase axtg5seg 27706 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ π = (AFSβπΊ) & β’ (π β π» β π) & β’ (π β πΌ β π) & β’ (π β β¨β¨π΄, π΅β©, β¨πΆ, π·β©β©πβ¨β¨πΈ, πΉβ©, β¨π», πΌβ©β©) & β’ (π β π΄ β π΅) β β’ (π β (πΆ β π·) = (π» β πΌ)) | ||
Syntax | clpad 33675 | Extend class notation with the leftpad function. |
class leftpad | ||
Definition | df-lpad 33676* | Define the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ leftpad = (π β V, π€ β V β¦ (π β β0 β¦ (((0..^(π β (β―βπ€))) Γ {π}) ++ π€))) | ||
Theorem | lpadval 33677 | Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) β β’ (π β ((πΆ leftpad π)βπΏ) = (((0..^(πΏ β (β―βπ))) Γ {πΆ}) ++ π)) | ||
Theorem | lpadlem1 33678 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΆ β π) β β’ (π β ((0..^(πΏ β (β―βπ))) Γ {πΆ}) β Word π) | ||
Theorem | lpadlem3 33679 | Lemma for lpadlen1 33680. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β πΏ β€ (β―βπ)) β β’ (π β ((0..^(πΏ β (β―βπ))) Γ {πΆ}) = β ) | ||
Theorem | lpadlen1 33680 | Length of a left-padded word, in the case the length of the given word π is at least the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β πΏ β€ (β―βπ)) β β’ (π β (β―β((πΆ leftpad π)βπΏ)) = (β―βπ)) | ||
Theorem | lpadlem2 33681 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β (β―βπ) β€ πΏ) β β’ (π β (β―β((0..^(πΏ β (β―βπ))) Γ {πΆ})) = (πΏ β (β―βπ))) | ||
Theorem | lpadlen2 33682 | Length of a left-padded word, in the case the given word π is shorter than the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β (β―βπ) β€ πΏ) β β’ (π β (β―β((πΆ leftpad π)βπΏ)) = πΏ) | ||
Theorem | lpadmax 33683 | Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) β β’ (π β (β―β((πΆ leftpad π)βπΏ)) = if(πΏ β€ (β―βπ), (β―βπ), πΏ)) | ||
Theorem | lpadleft 33684 | The contents of prefix of a left-padded word is always the letter πΆ. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β π β (0..^(πΏ β (β―βπ)))) β β’ (π β (((πΆ leftpad π)βπΏ)βπ) = πΆ) | ||
Theorem | lpadright 33685 | The suffix of a left-padded word the original word π. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
β’ (π β πΏ β β0) & β’ (π β π β Word π) & β’ (π β πΆ β π) & β’ (π β π = if(πΏ β€ (β―βπ), 0, (πΏ β (β―βπ)))) & β’ (π β π β (0..^(β―βπ))) β β’ (π β (((πΆ leftpad π)βπΏ)β(π + π)) = (πβπ)) | ||
Note: On 4-Sep-2016 and after, 745 unused theorems were deleted from this mathbox, and 359 theorems used only once or twice were merged into their referencing theorems. The originals can be recovered from set.mm versions prior to this date. | ||
Syntax | w-bnj17 33686 | Extend wff notation with the 4-way conjunction. (New usage is discouraged.) |
wff (π β§ π β§ π β§ π) | ||
Definition | df-bnj17 33687 | Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ ((π β§ π β§ π β§ π) β ((π β§ π β§ π) β§ π)) | ||
Syntax | c-bnj14 33688 | Extend class notation with the function giving: the class of all elements of π΄ that are "smaller" than π according to π . (New usage is discouraged.) |
class pred(π, π΄, π ) | ||
Definition | df-bnj14 33689* | Define the function giving: the class of all elements of π΄ that are "smaller" than π according to π . (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ pred(π, π΄, π ) = {π¦ β π΄ β£ π¦π π} | ||
Syntax | w-bnj13 33690 | Extend wff notation with the following predicate: π is set-like on π΄. (New usage is discouraged.) |
wff π Se π΄ | ||
Definition | df-bnj13 33691* | Define the following predicate: π is set-like on π΄. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ (π Se π΄ β βπ₯ β π΄ pred(π₯, π΄, π ) β V) | ||
Syntax | w-bnj15 33692 | Extend wff notation with the following predicate: π is both well-founded and set-like on π΄. (New usage is discouraged.) |
wff π FrSe π΄ | ||
Definition | df-bnj15 33693 | Define the following predicate: π is both well-founded and set-like on π΄. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ (π FrSe π΄ β (π Fr π΄ β§ π Se π΄)) | ||
Syntax | c-bnj18 33694 | Extend class notation with the function giving: the transitive closure of π in π΄ by π . (New usage is discouraged.) |
class trCl(π, π΄, π ) | ||
Definition | df-bnj18 33695* | Define the function giving: the transitive closure of π in π΄ by π . This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 33926. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ trCl(π, π΄, π ) = βͺ π β {π β£ βπ β (Ο β {β })(π Fn π β§ (πββ ) = pred(π, π΄, π ) β§ βπ β Ο (suc π β π β (πβsuc π) = βͺ π¦ β (πβπ) pred(π¦, π΄, π )))}βͺ π β dom π(πβπ) | ||
Syntax | w-bnj19 33696 | Extend wff notation with the following predicate: π΅ is transitive for π΄ and π . (New usage is discouraged.) |
wff TrFo(π΅, π΄, π ) | ||
Definition | df-bnj19 33697* | Define the following predicate: π΅ is transitive for π΄ and π . (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ ( TrFo(π΅, π΄, π ) β βπ₯ β π΅ pred(π₯, π΄, π ) β π΅) | ||
Theorem | bnj170 33698 | β§-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
β’ ((π β§ π β§ π) β ((π β§ π) β§ π)) | ||
Theorem | bnj240 33699 | β§-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ (π β πβ²) & β’ (π β πβ²) β β’ ((π β§ π β§ π) β (πβ² β§ πβ²)) | ||
Theorem | bnj248 33700 | β§-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
β’ ((π β§ π β§ π β§ π) β (((π β§ π) β§ π) β§ π)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |