HomeHome Metamath Proof Explorer
Theorem List (p. 337 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 33601-33700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
21.3.10.52  Vector Space Dimension
 
Syntaxcldim 33601 Extend class notation with the dimension of a vector space.
class dim
 
Definitiondf-dim 33602 Define the dimension of a vector space as the cardinality of its bases. Note that by lvecdim 21074, all bases are equinumerous. (Contributed by Thierry Arnoux, 6-May-2023.)
dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
 
Theoremdimval 33603 The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.)
𝐽 = (LBasis‘𝐹)       ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))
 
Theoremdimvalfi 33604 The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 33603 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.)
𝐽 = (LBasis‘𝐹)       ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))
 
Theoremdimcl 33605 Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
(𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*)
 
Theoremlmimdim 33606 Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025.)
(𝜑𝐹 ∈ (𝑆 LMIso 𝑇))    &   (𝜑𝑆 ∈ LVec)       (𝜑 → (dim‘𝑆) = (dim‘𝑇))
 
Theoremlmicdim 33607 Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Mar-2025.)
(𝜑𝑆𝑚 𝑇)    &   (𝜑𝑆 ∈ LVec)       (𝜑 → (dim‘𝑆) = (dim‘𝑇))
 
Theoremlvecdim0i 33608 A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.)
0 = (0g𝑉)       ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })
 
Theoremlvecdim0 33609 A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.)
0 = (0g𝑉)       (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 }))
 
Theoremlssdimle 33610 The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑋 = (𝑊s 𝑈)       ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊))
 
Theoremdimpropd 33611* If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐵𝑊)    &   ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))    &   𝐹 = (Scalar‘𝐾)    &   𝐺 = (Scalar‘𝐿)    &   (𝜑𝑃 = (Base‘𝐹))    &   (𝜑𝑃 = (Base‘𝐺))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))    &   (𝜑𝐾 ∈ LVec)    &   (𝜑𝐿 ∈ LVec)       (𝜑 → (dim‘𝐾) = (dim‘𝐿))
 
Theoremrlmdim 33612 The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) Generalize to division rings. (Revised by SN, 22-Mar-2025.)
𝑉 = (ringLMod‘𝐹)       (𝐹 ∈ DivRing → (dim‘𝑉) = 1)
 
TheoremrgmoddimOLD 33613 Obsolete version of rlmdim 33612 as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑉 = (ringLMod‘𝐹)       (𝐹 ∈ Field → (dim‘𝑉) = 1)
 
Theoremfrlmdim 33614 Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.)
𝐹 = (𝑅 freeLMod 𝐼)       ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (dim‘𝐹) = (♯‘𝐼))
 
Theoremtnglvec 33615 Augmenting a structure with a norm conserves left vector spaces. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑇 = (𝐺 toNrmGrp 𝑁)       (𝑁𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec))
 
Theoremtngdim 33616 Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑇 = (𝐺 toNrmGrp 𝑁)       ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))
 
Theoremrrxdim 33617 Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023.)
𝐻 = (ℝ^‘𝐼)       (𝐼𝑉 → (dim‘𝐻) = (♯‘𝐼))
 
Theoremmatdim 33618 Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
𝐴 = (𝐼 Mat 𝑅)    &   𝑁 = (♯‘𝐼)       ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
 
Theoremlbslsat 33619 A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 38976 and for example lsatlspsn 38993. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝑌 = (𝑊s (𝑁‘{𝑋}))       ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
 
Theoremlsatdim 33620 A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝑌 = (𝑊s (𝑁‘{𝑋}))       ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = 1)
 
Theoremdrngdimgt0 33621 The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.)
((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹))
 
Theoremlmhmlvec2 33622 A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.)
((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
 
Theoremkerlmhm 33623 The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023.)
0 = (0g𝑈)    &   𝐾 = (𝑉s (𝐹 “ { 0 }))       ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec)
 
Theoremimlmhm 33624 The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023.)
𝐼 = (𝑈s ran 𝐹)       ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec)
 
Theoremply1degltdimlem 33625* Lemma for ply1degltdim 33626. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝐷 = (deg1𝑅)    &   𝑆 = (𝐷 “ (-∞[,)𝑁))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑅 ∈ DivRing)    &   𝐸 = (𝑃s 𝑆)    &   𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))       (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
 
Theoremply1degltdim 33626 The space 𝑆 of the univariate polynomials of degree less than 𝑁 has dimension 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.)
𝑃 = (Poly1𝑅)    &   𝐷 = (deg1𝑅)    &   𝑆 = (𝐷 “ (-∞[,)𝑁))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑅 ∈ DivRing)    &   𝐸 = (𝑃s 𝑆)       (𝜑 → (dim‘𝐸) = 𝑁)
 
Theoremlindsunlem 33627 Lemma for lindsun 33628. (Contributed by Thierry Arnoux, 9-May-2023.)
𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈 ∈ (LIndS‘𝑊))    &   (𝜑𝑉 ∈ (LIndS‘𝑊))    &   (𝜑 → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })    &   𝑂 = (0g‘(Scalar‘𝑊))    &   𝐹 = (Base‘(Scalar‘𝑊))    &   (𝜑𝐶𝑈)    &   (𝜑𝐾 ∈ (𝐹 ∖ {𝑂}))    &   (𝜑 → (𝐾( ·𝑠𝑊)𝐶) ∈ (𝑁‘((𝑈𝑉) ∖ {𝐶})))       (𝜑 → ⊥)
 
Theoremlindsun 33628 Condition for the union of two independent sets to be an independent set. (Contributed by Thierry Arnoux, 9-May-2023.)
𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈 ∈ (LIndS‘𝑊))    &   (𝜑𝑉 ∈ (LIndS‘𝑊))    &   (𝜑 → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })       (𝜑 → (𝑈𝑉) ∈ (LIndS‘𝑊))
 
Theoremlbsdiflsp0 33629 The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 33628. (Contributed by Thierry Arnoux, 17-May-2023.)
𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
 
Theoremdimkerim 33630 Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.)
0 = (0g𝑈)    &   𝐾 = (𝑉s (𝐹 “ { 0 }))    &   𝐼 = (𝑈s ran 𝐹)       ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
 
Theoremqusdimsum 33631 Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑋 = (𝑊s 𝑈)    &   𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))       ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
 
Theoremfedgmullem1 33632* Lemma for fedgmul 33634. (Contributed by Thierry Arnoux, 20-Jul-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑉)    &   𝐵 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐶 = ((subringAlg ‘𝐹)‘𝑉)    &   𝐹 = (𝐸s 𝑈)    &   𝐾 = (𝐸s 𝑉)    &   (𝜑𝐸 ∈ DivRing)    &   (𝜑𝐹 ∈ DivRing)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑈 ∈ (SubRing‘𝐸))    &   (𝜑𝑉 ∈ (SubRing‘𝐹))    &   𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))    &   𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))    &   (𝜑𝑋 ∈ (LBasis‘𝐶))    &   (𝜑𝑌 ∈ (LBasis‘𝐵))    &   (𝜑𝑍 ∈ (Base‘𝐴))    &   (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))    &   (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))    &   (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))    &   (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))    &   ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))    &   ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))       (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
 
Theoremfedgmullem2 33633* Lemma for fedgmul 33634. (Contributed by Thierry Arnoux, 20-Jul-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑉)    &   𝐵 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐶 = ((subringAlg ‘𝐹)‘𝑉)    &   𝐹 = (𝐸s 𝑈)    &   𝐾 = (𝐸s 𝑉)    &   (𝜑𝐸 ∈ DivRing)    &   (𝜑𝐹 ∈ DivRing)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑈 ∈ (SubRing‘𝐸))    &   (𝜑𝑉 ∈ (SubRing‘𝐹))    &   𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))    &   𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))    &   (𝜑𝑋 ∈ (LBasis‘𝐶))    &   (𝜑𝑌 ∈ (LBasis‘𝐵))    &   (𝜑𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))))    &   (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (0g𝐴))       (𝜑𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}))
 
Theoremfedgmul 33634 The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑉)    &   𝐵 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐶 = ((subringAlg ‘𝐹)‘𝑉)    &   𝐹 = (𝐸s 𝑈)    &   𝐾 = (𝐸s 𝑉)    &   (𝜑𝐸 ∈ DivRing)    &   (𝜑𝐹 ∈ DivRing)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑈 ∈ (SubRing‘𝐸))    &   (𝜑𝑉 ∈ (SubRing‘𝐹))       (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
 
Theoremdimlssid 33635 If the dimension of a linear subspace 𝐿 is the dimension of the whole vector space 𝐸, then 𝐿 is the whole space. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ LVec)    &   (𝜑 → (dim‘𝐸) ∈ ℕ0)    &   (𝜑𝐿 ∈ (LSubSp‘𝐸))    &   (𝜑 → (dim‘(𝐸s 𝐿)) = (dim‘𝐸))       (𝜑𝐿 = 𝐵)
 
Theoremlvecendof1f1o 33636 If an endomorphism 𝑈 of a vector space 𝐸 of finite dimension is injective, then it is bijective. Item (b) of Corollary of Proposition 9 in [BourbakiAlg1] p. 298 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ LVec)    &   (𝜑 → (dim‘𝐸) ∈ ℕ0)    &   (𝜑𝑈 ∈ (𝐸 LMHom 𝐸))    &   (𝜑𝑈:𝐵1-1𝐵)       (𝜑𝑈:𝐵1-1-onto𝐵)
 
Theoremlactlmhm 33637* In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20228. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐴)    &    · = (.r𝐴)    &   𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))    &   (𝜑𝐴 ∈ AssAlg)    &   (𝜑𝐶𝐵)       (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
 
Theoremassalactf1o 33638* In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33637. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐴)    &    · = (.r𝐴)    &   𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))    &   (𝜑𝐴 ∈ AssAlg)    &   𝐸 = (RLReg‘𝐴)    &   𝐾 = (Scalar‘𝐴)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑 → (dim‘𝐴) ∈ ℕ0)    &   (𝜑𝐶𝐸)       (𝜑𝐹:𝐵1-1-onto𝐵)
 
Theoremassarrginv 33639 If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐸 = (RLReg‘𝐴)    &   𝑈 = (Unit‘𝐴)    &   𝐾 = (Scalar‘𝐴)    &   (𝜑𝐴 ∈ AssAlg)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑 → (dim‘𝐴) ∈ ℕ0)    &   (𝜑𝑋𝐸)       (𝜑𝑋𝑈)
 
Theoremassafld 33640 If an algebra 𝐴 of finite degree over a division ring 𝐾 is an integral domain, then it is a field. Corollary of Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐾 = (Scalar‘𝐴)    &   (𝜑𝐴 ∈ AssAlg)    &   (𝜑𝐴 ∈ IDomn)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑 → (dim‘𝐴) ∈ ℕ0)       (𝜑𝐴 ∈ Field)
 
21.3.11  Field Extensions
 
Syntaxcfldext 33641 Syntax for the field extension relation.
class /FldExt
 
Syntaxcfinext 33642 Syntax for the finite field extension relation.
class /FinExt
 
Syntaxcextdg 33643 Syntax for the field extension degree operation.
class [:]
 
Definitiondf-fldext 33644* Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
/FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
 
Definitiondf-extdg 33645* Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
[:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
 
Definitiondf-finext 33646* Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
/FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
 
Theoremrelfldext 33647 The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Rel /FldExt
 
Theorembrfldext 33648 The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
 
Theoremccfldextrr 33649 The field of the complex numbers is an extension of the field of the real numbers. (Contributed by Thierry Arnoux, 20-Jul-2023.)
fld/FldExtfld
 
Theoremfldextfld1 33650 A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹𝐸 ∈ Field)
 
Theoremfldextfld2 33651 A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹𝐹 ∈ Field)
 
Theoremfldextsubrg 33652 Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
𝑈 = (Base‘𝐹)       (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))
 
Theoremsdrgfldext 33653 A field 𝐸 and any sub-division-ring 𝐹 of 𝐸 form a field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝐵 = (Base‘𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))       (𝜑𝐸/FldExt(𝐸s 𝐹))
 
Theoremfldextress 33654 Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
 
Theorembrfinext 33655 The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))
 
Theoremextdgval 33656 Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
 
Theoremfldextsdrg 33657 Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
𝐵 = (Base‘𝐹)    &   (𝜑𝐸/FldExt𝐹)       (𝜑𝐵 ∈ (SubDRing‘𝐸))
 
Theoremfldextsralvec 33658 The subring algebra associated with a field extension is a vector space. (Contributed by Thierry Arnoux, 3-Aug-2023.)
(𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
 
Theoremextdgcl 33659 Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*)
 
Theoremextdggt0 33660 Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.)
(𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹))
 
Theoremfldexttr 33661 Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
 
Theoremfldextid 33662 The field extension relation is reflexive. (Contributed by Thierry Arnoux, 30-Jul-2023.)
(𝐹 ∈ Field → 𝐹/FldExt𝐹)
 
Theoremextdgid 33663 A trivial field extension has degree one. (Contributed by Thierry Arnoux, 4-Aug-2023.)
(𝐸 ∈ Field → (𝐸[:]𝐸) = 1)
 
Theoremfldsdrgfldext 33664 A sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐺 = (𝐹s 𝐴)    &   (𝜑𝐹 ∈ Field)    &   (𝜑𝐴 ∈ (SubDRing‘𝐹))       (𝜑𝐹/FldExt𝐺)
 
Theoremfldsdrgfldext2 33665 A sub-sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐺 = (𝐹s 𝐴)    &   (𝜑𝐹 ∈ Field)    &   (𝜑𝐴 ∈ (SubDRing‘𝐹))    &   (𝜑𝐵 ∈ (SubDRing‘𝐺))    &   𝐻 = (𝐹s 𝐵)       (𝜑𝐺/FldExt𝐻)
 
Theoremextdgmul 33666 The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.)
((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))
 
Theoremfinexttrb 33667 The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.)
((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹𝐹/FinExt𝐾)))
 
Theoremextdg1id 33668 If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.)
((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)
 
Theoremextdg1b 33669 The degree of the extension 𝐸/FldExt𝐹 is 1 iff 𝐸 and 𝐹 are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023.)
(𝐸/FldExt𝐹 → ((𝐸[:]𝐹) = 1 ↔ 𝐸 = 𝐹))
 
Theoremfldgenfldext 33670 A subfield 𝐹 extended with a set 𝐴 forms a field extension. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐵 = (Base‘𝐸)    &   𝐾 = (𝐸s 𝐹)    &   𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)       (𝜑𝐿/FldExt𝐾)
 
Theoremfldextchr 33671 The characteristic of a subfield is the same as the characteristic of the larger field. (Contributed by Thierry Arnoux, 20-Aug-2023.)
(𝐸/FldExt𝐹 → (chr‘𝐹) = (chr‘𝐸))
 
Theoremevls1fldgencl 33672 Closure of the subring polynomial evaluation in the field extention. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝐵 = (Base‘𝐸)    &   𝑂 = (𝐸 evalSub1 𝐹)    &   𝑃 = (Poly1‘(𝐸s 𝐹))    &   𝑈 = (Base‘𝑃)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   (𝜑𝐴𝐵)    &   (𝜑𝐺𝑈)       (𝜑 → ((𝑂𝐺)‘𝐴) ∈ (𝐸 fldGen (𝐹 ∪ {𝐴})))
 
Theoremccfldsrarelvec 33673 The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.)
((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
 
Theoremccfldextdgrr 33674 The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.)
(ℂfld[:]ℝfld) = 2
 
Theoremfldextrspunlsplem 33675* Lemma for fldextrspunlsp 33676: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   𝑁 = (RingSpan‘𝐿)    &   𝐶 = (𝑁‘(𝐺𝐻))    &   𝐸 = (𝐿s 𝐶)    &   (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝑃:𝐻𝐺)    &   (𝜑𝑃 finSupp (0g𝐿))    &   (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))       (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
 
Theoremfldextrspunlsp 33676 Lemma for fldextrspunfld 33678. The subring generated by the union of two field extensions 𝐺 and 𝐻 is the vector sub- 𝐺 space generated by a basis 𝐵 of 𝐻. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   𝑁 = (RingSpan‘𝐿)    &   𝐶 = (𝑁‘(𝐺𝐻))    &   𝐸 = (𝐿s 𝐶)    &   (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))    &   (𝜑𝐵 ∈ Fin)       (𝜑𝐶 = ((LSpan‘((subringAlg ‘𝐿)‘𝐺))‘𝐵))
 
Theoremfldextrspunlem1 33677 Lemma for fldextrspunfld 33678. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝑁 = (RingSpan‘𝐿)    &   𝐶 = (𝑁‘(𝐺𝐻))    &   𝐸 = (𝐿s 𝐶)       (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
 
Theoremfldextrspunfld 33678 The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝑁 = (RingSpan‘𝐿)    &   𝐶 = (𝑁‘(𝐺𝐻))    &   𝐸 = (𝐿s 𝐶)       (𝜑𝐸 ∈ Field)
 
Theoremfldextrspunlem2 33679 Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝑁 = (RingSpan‘𝐿)    &   𝐶 = (𝑁‘(𝐺𝐻))    &   𝐸 = (𝐿s 𝐶)       (𝜑𝐶 = (𝐿 fldGen (𝐺𝐻)))
 
Theoremfldextrspundgle 33680 Inequality involving the degree of two different field extensions 𝐼 and 𝐽 of a same field 𝐹. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))       (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾))
 
Theoremfldextrspundglemul 33681 Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, 𝐽 / 𝐾 being finite, and the composiste field 𝐸 = 𝐼𝐽, the degree of the extension of the composite field 𝐸 / 𝐾 is at most the product of the field extension degrees of 𝐼 / 𝐾 and 𝐽 / 𝐾. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))       (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
 
Theoremfldextrspundgdvdslem 33682 Lemma for fldextrspundgdvds 33683. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))    &   (𝜑 → (𝐼[:]𝐾) ∈ ℕ)       (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
 
Theoremfldextrspundgdvds 33683 Given two finite extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, the degree of the extension 𝐼 / 𝐾 divides the degree of the extension 𝐸 / 𝐾, 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)    &   𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))    &   (𝜑 → (𝐼[:]𝐾) ∈ ℕ)       (𝜑 → (𝐼[:]𝐾) ∥ (𝐸[:]𝐾))
 
Theoremfldext2rspun 33684* Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾, 𝐼 / 𝐾 being a quadratic extension, and the degree of 𝐽 / 𝐾 being a power of 2, the degree of the extension 𝐸 / 𝐾 is a power of 2 , 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
𝐾 = (𝐿s 𝐹)    &   𝐼 = (𝐿s 𝐺)    &   𝐽 = (𝐿s 𝐻)    &   (𝜑𝐿 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐼))    &   (𝜑𝐹 ∈ (SubDRing‘𝐽))    &   (𝜑𝐺 ∈ (SubDRing‘𝐿))    &   (𝜑𝐻 ∈ (SubDRing‘𝐿))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → (𝐼[:]𝐾) = 2)    &   (𝜑 → (𝐽[:]𝐾) = (2↑𝑁))    &   𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))       (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛))
 
21.3.11.1  Algebraic numbers
 
Syntaxcirng 33685 Integral subring of a ring.
class IntgRing
 
Definitiondf-irng 33686* Define the subring of elements of a ring 𝑟 integral over a subset 𝑠. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux, 28-Jan-2025.)
IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
 
Theoremirngval 33687* The elements of a field 𝑅 integral over a subset 𝑆. In the case of a subfield, those are the algebraic numbers over the field 𝑆 within the field 𝑅. That is, the numbers 𝑋 which are roots of monic polynomials 𝑃(𝑋) with coefficients in 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑆𝐵)       (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
 
Theoremelirng 33688* Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))       (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
 
Theoremirngss 33689 All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 33691). (Contributed by Thierry Arnoux, 28-Jan-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝑅 ∈ NzRing)       (𝜑𝑆 ⊆ (𝑅 IntgRing 𝑆))
 
Theoremirngssv 33690 An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))       (𝜑 → (𝑅 IntgRing 𝑆) ⊆ 𝐵)
 
Theorem0ringirng 33691 A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑 → ¬ 𝑅 ∈ NzRing)       (𝜑 → (𝑅 IntgRing 𝑆) = ∅)
 
Theoremirngnzply1lem 33692 In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑍 = (0g‘(Poly1𝐸))    &    0 = (0g𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))    &   𝐵 = (Base‘𝐸)    &   (𝜑𝑃 ∈ dom 𝑂)    &   (𝜑𝑃𝑍)    &   (𝜑 → ((𝑂𝑃)‘𝑋) = 0 )    &   (𝜑𝑋𝐵)       (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
 
Theoremirngnzply1 33693* In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.)
𝑂 = (𝐸 evalSub1 𝐹)    &   𝑍 = (0g‘(Poly1𝐸))    &    0 = (0g𝐸)    &   (𝜑𝐸 ∈ Field)    &   (𝜑𝐹 ∈ (SubDRing‘𝐸))       (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
 
21.3.11.2  Algebraic extensions
 
Syntaxcalgext 33694 Syntax for the algebraic field extension relation.
class /AlgExt
 
Definitiondf-algext 33695* Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
/AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))}
 
21.3.11.3  Minimal polynomials
 
Syntaxcminply 33696 Extend class notation with the minimal polynomial builder function.
class minPoly
 
Definitiondf-minply 33697* Define the minimal polynomial builder function. (Contributed by Thierry Arnoux, 19-Jan-2025.)
minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g𝑒)})))
 
Theoremply1annidllem 33698* Write the set 𝑄 of polynomials annihilating an element 𝐴 as the kernel of the ring homomorphism 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑃 = (Poly1‘(𝑅s 𝑆))    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐴𝐵)    &    0 = (0g𝑅)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }    &   𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))       (𝜑𝑄 = (𝐹 “ { 0 }))
 
Theoremply1annidl 33699* The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑃 = (Poly1‘(𝑅s 𝑆))    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐴𝐵)    &    0 = (0g𝑅)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }       (𝜑𝑄 ∈ (LIdeal‘𝑃))
 
Theoremply1annnr 33700* The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝑂 = (𝑅 evalSub1 𝑆)    &   𝑃 = (Poly1‘(𝑅s 𝑆))    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐴𝐵)    &    0 = (0g𝑅)    &   𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }    &   𝑈 = (Base‘𝑃)    &   (𝜑𝑅 ∈ NzRing)       (𝜑𝑄𝑈)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >