HomeHome Metamath Proof Explorer
Theorem List (p. 337 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 33601-33700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminffz 33601 The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.)
(𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
 
Theoremfz0n 33602 The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.)
(𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))
 
Theoremshftvalg 33603 Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
 
Theoremdivcnvlin 33604* Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵)))       (𝜑𝐹 ⇝ 1)
 
Theoremclimlec3 33605* Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)       (𝜑𝐴𝐵)
 
Theoremlogi 33606 Calculate the logarithm of i. (Contributed by Scott Fenton, 13-Apr-2020.)
(log‘i) = (i · (π / 2))
 
Theoremiexpire 33607 i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020.)
(i↑𝑐i) ∈ ℝ
 
Theorembcneg1 33608 The binomial coefficent over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.)
(𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
 
Theorembcm1nt 33609 The proportion of one bionmial coefficient to another with 𝑁 decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020.)
((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
 
Theorembcprod 33610* A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.)
(𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
 
Theorembccolsum 33611* A column-sum rule for binomial coefficents. (Contributed by Scott Fenton, 24-Jun-2020.)
((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
 
20.9.6  Infinite products
 
Theoremiprodefisumlem 33612 Lemma for iprodefisum 33613. (Contributed by Scott Fenton, 11-Feb-2018.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶ℂ)       (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))
 
Theoremiprodefisum 33613* Applying the exponential function to an infinite sum yields an infinite product. (Contributed by Scott Fenton, 11-Feb-2018.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → ∏𝑘𝑍 (exp‘𝐵) = (exp‘Σ𝑘𝑍 𝐵))
 
Theoremiprodgam 33614* An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.)
(𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))       (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
 
20.9.7  Factorial limits
 
Theoremfaclimlem1 33615* Lemma for faclim 33618. Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017.)
(𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))))
 
Theoremfaclimlem2 33616* Lemma for faclim 33618. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
(𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) ⇝ (𝑀 + 1))
 
Theoremfaclimlem3 33617 Lemma for faclim 33618. Algebraic manipulation for the final induction. (Contributed by Scott Fenton, 15-Dec-2017.)
((𝑀 ∈ ℕ0𝐵 ∈ ℕ) → (((1 + (1 / 𝐵))↑(𝑀 + 1)) / (1 + ((𝑀 + 1) / 𝐵))) = ((((1 + (1 / 𝐵))↑𝑀) / (1 + (𝑀 / 𝐵))) · (((1 + (𝑀 / 𝐵)) · (1 + (1 / 𝐵))) / (1 + ((𝑀 + 1) / 𝐵)))))
 
Theoremfaclim 33618* An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.)
𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛))))       (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴))
 
Theoremiprodfac 33619* An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.)
(𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘))))
 
Theoremfaclim2 33620* Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.)
𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))       (𝑀 ∈ ℕ0𝐹 ⇝ 1)
 
20.9.8  Greatest common divisor and divisibility
 
Theoremgcd32 33621 Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐴 gcd 𝐶) gcd 𝐵))
 
Theoremgcdabsorb 33622 Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐵) = (𝐴 gcd 𝐵))
 
20.9.9  Properties of relationships
 
Theorembrtp 33623 A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
𝑋 ∈ V    &   𝑌 ∈ V       (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
 
Theoremdftr6 33624 A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.)
𝐴 ∈ V       (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
 
Theoremcoep 33625* Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥𝐵 𝐴𝑅𝑥)
 
Theoremcoepr 33626* Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
 
Theoremdffr5 33627 A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.)
(𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))
 
Theoremdfso2 33628 Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.)
(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))
 
Theorembr8 33629* Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.)
(𝑎 = 𝐴 → (𝜑𝜓))    &   (𝑏 = 𝐵 → (𝜓𝜒))    &   (𝑐 = 𝐶 → (𝜒𝜃))    &   (𝑑 = 𝐷 → (𝜃𝜏))    &   (𝑒 = 𝐸 → (𝜏𝜂))    &   (𝑓 = 𝐹 → (𝜂𝜁))    &   (𝑔 = 𝐺 → (𝜁𝜎))    &   ( = 𝐻 → (𝜎𝜌))    &   (𝑥 = 𝑋𝑃 = 𝑄)    &   𝑅 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃𝑔𝑃𝑃 (𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ 𝜑)}       (((𝑋𝑆𝐴𝑄𝐵𝑄) ∧ (𝐶𝑄𝐷𝑄𝐸𝑄) ∧ (𝐹𝑄𝐺𝑄𝐻𝑄)) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩𝑅⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ 𝜌))
 
Theorembr6 33630* Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013.) (Revised by Mario Carneiro, 3-May-2015.)
(𝑎 = 𝐴 → (𝜑𝜓))    &   (𝑏 = 𝐵 → (𝜓𝜒))    &   (𝑐 = 𝐶 → (𝜒𝜃))    &   (𝑑 = 𝐷 → (𝜃𝜏))    &   (𝑒 = 𝐸 → (𝜏𝜂))    &   (𝑓 = 𝐹 → (𝜂𝜁))    &   (𝑥 = 𝑋𝑃 = 𝑄)    &   𝑅 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 (𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ 𝜑)}       ((𝑋𝑆 ∧ (𝐴𝑄𝐵𝑄𝐶𝑄) ∧ (𝐷𝑄𝐸𝑄𝐹𝑄)) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩𝑅𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ 𝜁))
 
Theorembr4 33631* Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013.) (Revised by Mario Carneiro, 14-Oct-2013.)
(𝑎 = 𝐴 → (𝜑𝜓))    &   (𝑏 = 𝐵 → (𝜓𝜒))    &   (𝑐 = 𝐶 → (𝜒𝜃))    &   (𝑑 = 𝐷 → (𝜃𝜏))    &   (𝑥 = 𝑋𝑃 = 𝑄)    &   𝑅 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ 𝜑)}       ((𝑋𝑆 ∧ (𝐴𝑄𝐵𝑄) ∧ (𝐶𝑄𝐷𝑄)) → (⟨𝐴, 𝐵𝑅𝐶, 𝐷⟩ ↔ 𝜏))
 
Theoremcnvco1 33632 Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
(𝐴𝐵) = (𝐵𝐴)
 
Theoremcnvco2 33633 Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
(𝐴𝐵) = (𝐵𝐴)
 
Theoremeldm3 33634 Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.)
(𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
 
Theoremelrn3 33635 Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.)
(𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
 
Theorempocnv 33636 The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 Po 𝐴𝑅 Po 𝐴)
 
Theoremsocnv 33637 The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 Or 𝐴𝑅 Or 𝐴)
 
Theoremsotrd 33638 Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021.)
(𝜑𝑅 Or 𝐴)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝑍𝐴)    &   (𝜑𝑋𝑅𝑌)    &   (𝜑𝑌𝑅𝑍)       (𝜑𝑋𝑅𝑍)
 
Theoremsotr3 33639 Transitivity law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021.)
((𝑅 Or 𝐴 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋𝑅𝑌 ∧ ¬ 𝑍𝑅𝑌) → 𝑋𝑅𝑍))
 
Theoremsotrine 33640 Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021.)
((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))
 
Theoremeqfunresadj 33641 Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.)
(((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))
 
Theoremeqfunressuc 33642 Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.)
(((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐺 ∧ (𝐹𝑋) = (𝐺𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋))
 
Theoremfuneldmb 33643 If is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.)
((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))
 
Theoremelintfv 33644* Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.)
𝑋 ∈ V       ((𝐹 Fn 𝐴𝐵𝐴) → (𝑋 (𝐹𝐵) ↔ ∀𝑦𝐵 𝑋 ∈ (𝐹𝑦)))
 
20.9.10  Properties of functions and mappings
 
Theoremfunpsstri 33645 A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
 
Theoremfundmpss 33646 If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.)
(Fun 𝐺 → (𝐹𝐺 → dom 𝐹 ⊊ dom 𝐺))
 
Theoremfvresval 33647 The value of a function at a restriction is either null or the same as the function itself. (Contributed by Scott Fenton, 4-Sep-2011.)
(((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)
 
Theoremfunsseq 33648 Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.)
((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺𝐹𝐺))
 
Theoremfununiq 33649 The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
 
Theoremfunbreq 33650 An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((Fun 𝐹𝐴𝐹𝐵) → (𝐴𝐹𝐶𝐵 = 𝐶))
 
Theorembr1steq 33651 Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩1st 𝐶𝐶 = 𝐴)
 
Theorembr2ndeq 33652 Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩2nd 𝐶𝐶 = 𝐵)
 
Theoremdfdm5 33653 Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
 
Theoremdfrn5 33654 Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)
 
Theoremopelco3 33655 Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.)
(⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴})))
 
Theoremelima4 33656 Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.)
(𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)
 
Theoremfv1stcnv 33657 The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
((𝑋𝐴𝑌𝑉) → ((1st ↾ (𝐴 × {𝑌}))‘𝑋) = ⟨𝑋, 𝑌⟩)
 
Theoremfv2ndcnv 33658 The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)
 
Theoremimaindm 33659 The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.)
(𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))
 
20.9.11  Set induction (or epsilon induction)
 
Theoremsetinds 33660* Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.)
(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)       𝜑
 
Theoremsetinds2f 33661* E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (∀𝑦𝑥 𝜓𝜑)       𝜑
 
Theoremsetinds2 33662* E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (∀𝑦𝑥 𝜓𝜑)       𝜑
 
20.9.12  Ordinal numbers
 
Theoremelpotr 33663* A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.)
(∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
 
Theoremdford5reg 33664 Given ax-reg 9281, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.)
(Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴))
 
Theoremdfon2lem1 33665 Lemma for dfon2 33674. (Contributed by Scott Fenton, 28-Feb-2011.)
Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}
 
Theoremdfon2lem2 33666* Lemma for dfon2 33674. (Contributed by Scott Fenton, 28-Feb-2011.)
{𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
 
Theoremdfon2lem3 33667* Lemma for dfon2 33674. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.)
(𝐴𝑉 → (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧)))
 
Theoremdfon2lem4 33668* Lemma for dfon2 33674. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐵𝐴))
 
Theoremdfon2lem5 33669* Lemma for dfon2 33674. Two sets satisfying the new definition also satisfy trichotomy with respect to . (Contributed by Scott Fenton, 25-Feb-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremdfon2lem6 33670* Lemma for dfon2 33674. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.)
((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
 
Theoremdfon2lem7 33671* Lemma for dfon2 33674. All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011.)
𝐴 ∈ V       (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (𝐵𝐴 → ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)))
 
Theoremdfon2lem8 33672* Lemma for dfon2 33674. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.)
((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
 
Theoremdfon2lem9 33673* Lemma for dfon2 33674. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.)
(∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
 
Theoremdfon2 33674* On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.)
On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
 
Theoremrdgprc0 33675 The value of the recursive definition generator at when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
 
Theoremrdgprc 33676 The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
 
Theoremdfrdg2 33677* Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
 
Theoremdfrdg3 33678* Generalization of dfrdg2 33677 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
 
20.9.13  Defined equality axioms
 
Theoremaxextdfeq 33679 A version of ax-ext 2709 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.)
𝑧((𝑧𝑥𝑧𝑦) → ((𝑧𝑦𝑧𝑥) → (𝑥𝑤𝑦𝑤)))
 
Theoremax8dfeq 33680 A version of ax-8 2110 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.)
𝑧((𝑧𝑥𝑧𝑦) → (𝑤𝑥𝑤𝑦))
 
Theoremaxextdist 33681 ax-ext 2709 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.)
((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
 
Theoremaxextbdist 33682 axextb 2712 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.)
((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))
 
Theorem19.12b 33683* Version of 19.12vv 2347 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
 
Theoremexnel 33684 There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.)
𝑥 ¬ 𝑥𝑦
 
Theoremdistel 33685 Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5287 and elirrv 9285.) (Contributed by Scott Fenton, 15-Dec-2010.)
(¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)
 
Theoremaxextndbi 33686 axextnd 10278 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.)
𝑧(𝑥 = 𝑦 ↔ (𝑧𝑥𝑧𝑦))
 
20.9.14  Hypothesis builders
 
Theoremhbntg 33687 A more general form of hbnt 2294. (Contributed by Scott Fenton, 13-Dec-2010.)
(∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑))
 
Theoremhbimtg 33688 A more general and closed form of hbim 2299. (Contributed by Scott Fenton, 13-Dec-2010.)
((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒𝜓) → ∀𝑥(𝜑𝜃)))
 
Theoremhbaltg 33689 A more general and closed form of hbal 2169. (Contributed by Scott Fenton, 13-Dec-2010.)
(∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦𝑥𝜓))
 
Theoremhbng 33690 A more general form of hbn 2295. (Contributed by Scott Fenton, 13-Dec-2010.)
(𝜑 → ∀𝑥𝜓)       𝜓 → ∀𝑥 ¬ 𝜑)
 
Theoremhbimg 33691 A more general form of hbim 2299. (Contributed by Scott Fenton, 13-Dec-2010.)
(𝜑 → ∀𝑥𝜓)    &   (𝜒 → ∀𝑥𝜃)       ((𝜓𝜒) → ∀𝑥(𝜑𝜃))
 
20.9.15  (Trans)finite Recursion Theorems
 
Theoremtfisg 33692* A closed form of tfis 7676. (Contributed by Scott Fenton, 8-Jun-2011.)
(∀𝑥 ∈ On (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥 ∈ On 𝜑)
 
20.9.16  Transitive closure of a relation
 
Syntaxcttrcl 33693 Declare the syntax for the transitive closure of a class.
class t++𝑅
 
Definitiondf-ttrcl 33694* Define the transitive closure of a class. This is the smallest relationship containing 𝑅 (or more precisely, the relation (𝑅 ↾ V) induced by 𝑅) and having the transitive property. Definition from [Levy] p. 59, who denotes it as 𝑅 and calls it the "ancestral" of 𝑅. (Contributed by Scott Fenton, 17-Oct-2024.)
t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
 
Theoremttrcleq 33695 Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
(𝑅 = 𝑆 → t++𝑅 = t++𝑆)
 
Theoremnfttrcld 33696 Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.)
(𝜑𝑥𝑅)       (𝜑𝑥t++𝑅)
 
Theoremnfttrcl 33697 Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
𝑥𝑅       𝑥t++𝑅
 
Theoremrelttrcl 33698 The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.)
Rel t++𝑅
 
Theorembrttrcl 33699* Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024.)
(𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
 
Theorembrttrcl2 33700* Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024.)
(𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >