| Step | Hyp | Ref
| Expression |
| 1 | | df-extv 33581 |
. . 3
⊢
extendVars = (𝑖
∈ V, 𝑟 ∈ V
↦ (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)))))) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → extendVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟))))))) |
| 3 | | simpl 482 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑖 = 𝐼) |
| 4 | | difeq1 4068 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → (𝑖 ∖ {𝑎}) = (𝐼 ∖ {𝑎})) |
| 5 | | extvval.j |
. . . . . . . . . 10
⊢ 𝐽 = (𝐼 ∖ {𝑎}) |
| 6 | 4, 5 | eqtr4di 2786 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (𝑖 ∖ {𝑎}) = 𝐽) |
| 7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 ∖ {𝑎}) = 𝐽) |
| 8 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 9 | 7, 8 | oveq12d 7370 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 ∖ {𝑎}) mPoly 𝑟) = (𝐽 mPoly 𝑅)) |
| 10 | 9 | fveq2d 6832 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) = (Base‘(𝐽 mPoly 𝑅))) |
| 11 | | extvval.m |
. . . . . 6
⊢ 𝑀 = (Base‘(𝐽 mPoly 𝑅)) |
| 12 | 10, 11 | eqtr4di 2786 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) = 𝑀) |
| 13 | | oveq2 7360 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
| 14 | 13 | rabeqdv 3411 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 15 | | extvval.d |
. . . . . . . 8
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 16 | 14, 15 | eqtr4di 2786 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} = 𝐷) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} = 𝐷) |
| 18 | 4 | reseq2d 5932 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (𝑥 ↾ (𝑖 ∖ {𝑎})) = (𝑥 ↾ (𝐼 ∖ {𝑎}))) |
| 19 | 18 | fveq2d 6832 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))) = (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎})))) |
| 20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))) = (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎})))) |
| 21 | | fveq2 6828 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 22 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = (0g‘𝑅)) |
| 23 | | extvval.1 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 24 | 22, 23 | eqtr4di 2786 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = 0 ) |
| 25 | 20, 24 | ifeq12d 4496 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)) = if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )) |
| 26 | 17, 25 | mpteq12dv 5180 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟))) = (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))) |
| 27 | 12, 26 | mpteq12dv 5180 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟)))) = (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))) |
| 28 | 3, 27 | mpteq12dv 5180 |
. . 3
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟))))) = (𝑎 ∈ 𝐼 ↦ (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))))) |
| 29 | 28 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (𝑎 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} ↦
if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g‘𝑟))))) = (𝑎 ∈ 𝐼 ↦ (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))))) |
| 30 | | extvval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 31 | 30 | elexd 3461 |
. 2
⊢ (𝜑 → 𝐼 ∈ V) |
| 32 | | extvval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| 33 | 32 | elexd 3461 |
. 2
⊢ (𝜑 → 𝑅 ∈ V) |
| 34 | 30 | mptexd 7164 |
. 2
⊢ (𝜑 → (𝑎 ∈ 𝐼 ↦ (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))) ∈
V) |
| 35 | 2, 29, 31, 33, 34 | ovmpod 7504 |
1
⊢ (𝜑 → (𝐼extendVars𝑅) = (𝑎 ∈ 𝐼 ↦ (𝑓 ∈ 𝑀 ↦ (𝑥 ∈ 𝐷 ↦ if((𝑥‘𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))))) |