Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extvval Structured version   Visualization version   GIF version

Theorem extvval 33582
Description: Value of the "variable extension" function. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Hypotheses
Ref Expression
extvval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
extvval.1 0 = (0g𝑅)
extvval.i (𝜑𝐼𝑉)
extvval.r (𝜑𝑅𝑊)
extvval.j 𝐽 = (𝐼 ∖ {𝑎})
extvval.m 𝑀 = (Base‘(𝐽 mPoly 𝑅))
Assertion
Ref Expression
extvval (𝜑 → (𝐼extendVars𝑅) = (𝑎𝐼 ↦ (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))))
Distinct variable groups:   𝐼,𝑎,𝑓,,𝑥   𝑅,𝑎,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑓,,𝑎)   𝐷(𝑥,𝑓,,𝑎)   𝑅()   𝐽(𝑥,𝑓,,𝑎)   𝑀(𝑥,𝑓,,𝑎)   𝑉(𝑥,𝑓,,𝑎)   𝑊(𝑥,𝑓,,𝑎)   0 (𝑥,𝑓,,𝑎)

Proof of Theorem extvval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-extv 33581 . . 3 extendVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))))
21a1i 11 . 2 (𝜑 → extendVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟)))))))
3 simpl 482 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
4 difeq1 4068 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 ∖ {𝑎}) = (𝐼 ∖ {𝑎}))
5 extvval.j . . . . . . . . . 10 𝐽 = (𝐼 ∖ {𝑎})
64, 5eqtr4di 2786 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖 ∖ {𝑎}) = 𝐽)
76adantr 480 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 ∖ {𝑎}) = 𝐽)
8 simpr 484 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑟 = 𝑅)
97, 8oveq12d 7370 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑖 ∖ {𝑎}) mPoly 𝑟) = (𝐽 mPoly 𝑅))
109fveq2d 6832 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) = (Base‘(𝐽 mPoly 𝑅)))
11 extvval.m . . . . . 6 𝑀 = (Base‘(𝐽 mPoly 𝑅))
1210, 11eqtr4di 2786 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) = 𝑀)
13 oveq2 7360 . . . . . . . . 9 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1413rabeqdv 3411 . . . . . . . 8 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
15 extvval.d . . . . . . . 8 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
1614, 15eqtr4di 2786 . . . . . . 7 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = 𝐷)
1716adantr 480 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = 𝐷)
184reseq2d 5932 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑥 ↾ (𝑖 ∖ {𝑎})) = (𝑥 ↾ (𝐼 ∖ {𝑎})))
1918fveq2d 6832 . . . . . . . 8 (𝑖 = 𝐼 → (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))) = (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))))
2019adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))) = (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))))
21 fveq2 6828 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
2221adantl 481 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (0g𝑟) = (0g𝑅))
23 extvval.1 . . . . . . . 8 0 = (0g𝑅)
2422, 23eqtr4di 2786 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (0g𝑟) = 0 )
2520, 24ifeq12d 4496 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟)) = if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))
2617, 25mpteq12dv 5180 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))) = (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))
2712, 26mpteq12dv 5180 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟)))) = (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 ))))
283, 27mpteq12dv 5180 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))) = (𝑎𝐼 ↦ (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))))
2928adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑎𝑖 ↦ (𝑓 ∈ (Base‘((𝑖 ∖ {𝑎}) mPoly 𝑟)) ↦ (𝑥 ∈ { ∈ (ℕ0m 𝑖) ∣ finSupp 0} ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝑖 ∖ {𝑎}))), (0g𝑟))))) = (𝑎𝐼 ↦ (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))))
30 extvval.i . . 3 (𝜑𝐼𝑉)
3130elexd 3461 . 2 (𝜑𝐼 ∈ V)
32 extvval.r . . 3 (𝜑𝑅𝑊)
3332elexd 3461 . 2 (𝜑𝑅 ∈ V)
3430mptexd 7164 . 2 (𝜑 → (𝑎𝐼 ↦ (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))) ∈ V)
352, 29, 31, 33, 34ovmpod 7504 1 (𝜑 → (𝐼extendVars𝑅) = (𝑎𝐼 ↦ (𝑓𝑀 ↦ (𝑥𝐷 ↦ if((𝑥𝑎) = 0, (𝑓‘(𝑥 ↾ (𝐼 ∖ {𝑎}))), 0 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  ifcif 4474  {csn 4575   class class class wbr 5093  cmpt 5174  cres 5621  cfv 6486  (class class class)co 7352  cmpo 7354  m cmap 8756   finSupp cfsupp 9252  0cc0 11013  0cn0 12388  Basecbs 17122  0gc0g 17345   mPoly cmpl 21845  extendVarscextv 33580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-extv 33581
This theorem is referenced by:  extvfval  33583
  Copyright terms: Public domain W3C validator