Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-frac Structured version   Visualization version   GIF version

Definition df-frac 33153
Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025.)
Assertion
Ref Expression
df-frac Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟)))

Detailed syntax breakdown of Definition df-frac
StepHypRef Expression
1 cfrac 33152 . 2 class Frac
2 vr . . 3 setvar 𝑟
3 cvv 3462 . . 3 class V
42cv 1533 . . . 4 class 𝑟
5 crlreg 20669 . . . . 5 class RLReg
64, 5cfv 6554 . . . 4 class (RLReg‘𝑟)
7 crloc 33109 . . . 4 class RLocal
84, 6, 7co 7424 . . 3 class (𝑟 RLocal (RLReg‘𝑟))
92, 3, 8cmpt 5236 . 2 class (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟)))
101, 9wceq 1534 1 wff Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟)))
Colors of variables: wff setvar class
This definition is referenced by:  fracval  33154
  Copyright terms: Public domain W3C validator