![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-frac | Structured version Visualization version GIF version |
Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025.) |
Ref | Expression |
---|---|
df-frac | ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfrac 33152 | . 2 class Frac | |
2 | vr | . . 3 setvar 𝑟 | |
3 | cvv 3462 | . . 3 class V | |
4 | 2 | cv 1533 | . . . 4 class 𝑟 |
5 | crlreg 20669 | . . . . 5 class RLReg | |
6 | 4, 5 | cfv 6554 | . . . 4 class (RLReg‘𝑟) |
7 | crloc 33109 | . . . 4 class RLocal | |
8 | 4, 6, 7 | co 7424 | . . 3 class (𝑟 RLocal (RLReg‘𝑟)) |
9 | 2, 3, 8 | cmpt 5236 | . 2 class (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) |
10 | 1, 9 | wceq 1534 | 1 wff Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) |
Colors of variables: wff setvar class |
This definition is referenced by: fracval 33154 |
Copyright terms: Public domain | W3C validator |