| Metamath
Proof Explorer Theorem List (p. 334 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sdrgdvcl 33301 | A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ / = (/r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) | ||
| Theorem | sdrginvcl 33302 | A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) | ||
| Theorem | primefldchr 33303 | The characteristic of a prime field is the same as the characteristic of the main field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → (chr‘𝑃) = (chr‘𝑅)) | ||
| Syntax | cfrac 33304 | Syntax for the field of fractions of a given integral domain. |
| class Frac | ||
| Definition | df-frac 33305 | Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025.) |
| ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) | ||
| Theorem | fracval 33306 | Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) | ||
| Theorem | fracbas 33307 | The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐹 = ( Frac ‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝐸) ⇒ ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) | ||
| Theorem | fracerl 33308 | Rewrite the ring localization equivalence relation in the case of a field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∼ = (𝑅 ~RL (RLReg‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (RLReg‘𝑅)) & ⊢ (𝜑 → 𝐻 ∈ (RLReg‘𝑅)) ⇒ ⊢ (𝜑 → (〈𝐸, 𝐹〉 ∼ 〈𝐺, 𝐻〉 ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹))) | ||
| Theorem | fracf1 33309* | The embedding of a commutative ring 𝑅 into its field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ∼ = (𝑅 ~RL 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝐸) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom ( Frac ‘𝑅)))) | ||
| Theorem | fracfld 33310 | The field of fractions of an integral domain is a field. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → ( Frac ‘𝑅) ∈ Field) | ||
| Theorem | idomsubr 33311* | Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅 ≃𝑟 (𝑓 ↾s 𝑠)) | ||
| Syntax | cfldgen 33312 | Syntax for a function generating sub-fields. |
| class fldGen | ||
| Definition | df-fldgen 33313* | Define a function generating the smallest sub-division-ring of a given ring containing a given set. If the base structure is a division ring, then this is also a division ring (see fldgensdrg 33316). If the base structure is a field, this is a subfield (see fldgenfld 33322 and fldsdrgfld 20799). In general this will be used in the context of fields, hence the name fldGen. (Contributed by Saveliy Skresanov and Thierry Arnoux, 9-Jan-2025.) |
| ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | ||
| Theorem | fldgenval 33314* | Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) | ||
| Theorem | fldgenssid 33315 | The field generated by a set of elements contains those elements. See lspssid 20983. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ⊆ (𝐹 fldGen 𝑆)) | ||
| Theorem | fldgensdrg 33316 | A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹)) | ||
| Theorem | fldgenssv 33317 | A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) ⊆ 𝐵) | ||
| Theorem | fldgenss 33318 | Generated subfields preserve subset ordering. ( see lspss 20982 and spanss 31367) (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑇) ⊆ (𝐹 fldGen 𝑆)) | ||
| Theorem | fldgenidfld 33319 | The subfield generated by a subfield is the subfield itself. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝐹)) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) = 𝑆) | ||
| Theorem | fldgenssp 33320 | The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝐹)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆) | ||
| Theorem | fldgenid 33321 | The subfield of a field 𝐹 generated by the whole base set of 𝐹 is 𝐹 itself. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝐵) = 𝐵) | ||
| Theorem | fldgenfld 33322 | A generated subfield is a field. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ↾s (𝐹 fldGen 𝑆)) ∈ Field) | ||
| Theorem | primefldgen1 33323 | The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) | ||
| Theorem | 1fldgenq 33324 | The field of rational numbers ℚ is generated by 1 in ℂfld, that is, ℚ is the prime field of ℂfld. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ (ℂfld fldGen {1}) = ℚ | ||
| Syntax | corng 33325 | Extend class notation with the class of all ordered rings. |
| class oRing | ||
| Syntax | cofld 33326 | Extend class notation with the class of all ordered fields. |
| class oField | ||
| Definition | df-orng 33327* | Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} | ||
| Definition | df-ofld 33328 | Define class of all ordered fields. An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
| ⊢ oField = (Field ∩ oRing) | ||
| Theorem | isorng 33329* | An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) | ||
| Theorem | orngring 33330 | An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | ||
| Theorem | orngogrp 33331 | An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | ||
| Theorem | isofld 33332 | An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | ||
| Theorem | orngmul 33333 | In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ (𝑋 · 𝑌)) | ||
| Theorem | orngsqr 33334 | In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝑋 · 𝑋)) | ||
| Theorem | ornglmulle 33335 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) | ||
| Theorem | orngrmulle 33336 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) | ||
| Theorem | ornglmullt 33337 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌)) | ||
| Theorem | orngrmullt 33338 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍)) | ||
| Theorem | orngmullt 33339 | In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 0 < 𝑌) ⇒ ⊢ (𝜑 → 0 < (𝑋 · 𝑌)) | ||
| Theorem | ofldfld 33340 | An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | ||
| Theorem | ofldtos 33341 | An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) | ||
| Theorem | orng0le1 33342 | In an ordered ring, the ring unity is positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ ≤ = (le‘𝐹) ⇒ ⊢ (𝐹 ∈ oRing → 0 ≤ 1 ) | ||
| Theorem | ofldlt1 33343 | In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ < = (lt‘𝐹) ⇒ ⊢ (𝐹 ∈ oField → 0 < 1 ) | ||
| Theorem | ofldchr 33344 | The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.) |
| ⊢ (𝐹 ∈ oField → (chr‘𝐹) = 0) | ||
| Theorem | suborng 33345 | Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oRing) | ||
| Theorem | subofld 33346 | Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ((𝐹 ∈ oField ∧ (𝐹 ↾s 𝐴) ∈ Field) → (𝐹 ↾s 𝐴) ∈ oField) | ||
| Theorem | isarchiofld 33347* | Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐻 = (ℤRHom‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∃𝑛 ∈ ℕ 𝑥 < (𝐻‘𝑛))) | ||
| Theorem | rhmdvd 33348 | A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ / = (/r‘𝑆) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) | ||
| Theorem | kerunit 33349 | If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) → 1 = 0 ) | ||
| Syntax | cresv 33350 | Extend class notation with the scalar restriction operation. |
| class ↾v | ||
| Definition | df-resv 33351* | Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.) |
| ⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉))) | ||
| Theorem | reldmresv 33352 | The scalar restriction is a proper operator, so it can be used with ovprc1 7470. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ Rel dom ↾v | ||
| Theorem | resvval 33353 | Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) | ||
| Theorem | resvid2 33354 | General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) | ||
| Theorem | resvval2 33355 | Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | ||
| Theorem | resvsca 33356 | Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ↾s 𝐴) = (Scalar‘𝑅)) | ||
| Theorem | resvlem 33357 | Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
| ⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
| Theorem | resvlemOLD 33358 | Obsolete version of resvlem 33357 as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑅 = (𝑊 ↾v 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ 5 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
| Theorem | resvbas 33359 | Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) | ||
| Theorem | resvbasOLD 33360 | Obsolete proof of resvbas 33359 as of 31-Oct-2024. Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 = (Base‘𝐻)) | ||
| Theorem | resvplusg 33361 | +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
| Theorem | resvplusgOLD 33362 | Obsolete proof of resvplusg 33361 as of 31-Oct-2024. +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
| Theorem | resvvsca 33363 | ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | resvvscaOLD 33364 | Obsolete proof of resvvsca 33363 as of 31-Oct-2024. ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | resvmulr 33365 | .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝐻)) | ||
| Theorem | resvmulrOLD 33366 | Obsolete proof of resvmulr 33365 as of 31-Oct-2024. ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ · = (.r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝐻)) | ||
| Theorem | resv0g 33367 | 0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 0 = (0g‘𝐻)) | ||
| Theorem | resv1r 33368 | 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) & ⊢ 1 = (1r‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) | ||
| Theorem | resvcmn 33369 | Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝐻 = (𝐺 ↾v 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd)) | ||
| Theorem | gzcrng 33370 | The gaussian integers form a commutative ring. (Contributed by Thierry Arnoux, 18-Mar-2018.) |
| ⊢ (ℂfld ↾s ℤ[i]) ∈ CRing | ||
| Theorem | cnfldfld 33371 | The complex numbers form a field. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ ℂfld ∈ Field | ||
| Theorem | reofld 33372 | The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ℝfld ∈ oField | ||
| Theorem | nn0omnd 33373 | The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (ℂfld ↾s ℕ0) ∈ oMnd | ||
| Theorem | rearchi 33374 | The field of the real numbers is Archimedean. See also arch 12523. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ ℝfld ∈ Archi | ||
| Theorem | nn0archi 33375 | The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
| ⊢ (ℂfld ↾s ℕ0) ∈ Archi | ||
| Theorem | xrge0slmod 33376 | The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ 𝑊 = (𝐺 ↾v (0[,)+∞)) ⇒ ⊢ 𝑊 ∈ SLMod | ||
| Theorem | qusker 33377* | The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.) |
| ⊢ 𝑉 = (Base‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) & ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ 0 = (0g‘𝑁) ⇒ ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → (◡𝐹 “ { 0 }) = 𝐺) | ||
| Theorem | eqgvscpbl 33378 | The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ∼ = (𝑀 ~QG 𝐺) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∼ 𝑌 → (𝐾 · 𝑋) ∼ (𝐾 · 𝑌))) | ||
| Theorem | qusvscpbl 33379* | The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ∼ = (𝑀 ~QG 𝐺) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ ∙ = ( ·𝑠 ‘𝑁) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) | ||
| Theorem | qusvsval 33380 | Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ∼ = (𝑀 ~QG 𝐺) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ ∙ = ( ·𝑠 ‘𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) | ||
| Theorem | imaslmod 33381* | The image structure of a left module is a left module. (Contributed by Thierry Arnoux, 15-May-2023.) |
| ⊢ (𝜑 → 𝑁 = (𝐹 “s 𝑀)) & ⊢ 𝑉 = (Base‘𝑀) & ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) & ⊢ + = (+g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝐹‘(𝑘 · 𝑎)) = (𝐹‘(𝑘 · 𝑏)))) & ⊢ (𝜑 → 𝑀 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑁 ∈ LMod) | ||
| Theorem | imasmhm 33382* | Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ + = (+g‘𝑊) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑊 ∈ Mnd) ⇒ ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊)))) | ||
| Theorem | imasghm 33383* | Given a function 𝐹 with homomorphic properties, build the image of a group. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ + = (+g‘𝑊) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑊 ∈ Grp) ⇒ ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Grp ∧ 𝐹 ∈ (𝑊 GrpHom (𝐹 “s 𝑊)))) | ||
| Theorem | imasrhm 33384* | Given a function 𝐹 with homomorphic properties, build the image of a ring. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ + = (+g‘𝑊) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ · = (.r‘𝑊) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑊 ∈ Ring) ⇒ ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊)))) | ||
| Theorem | imaslmhm 33385* | Given a function 𝐹 with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ + = (+g‘𝑊) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏)))) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ × = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹 “s 𝑊)))) | ||
| Theorem | quslmod 33386 | If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ 𝑉 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) ⇒ ⊢ (𝜑 → 𝑁 ∈ LMod) | ||
| Theorem | quslmhm 33387* | If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) & ⊢ 𝑉 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) | ||
| Theorem | quslvec 33388 | If 𝑆 is a vector subspace in 𝑊, then 𝑄 = 𝑊 / 𝑆 is a vector space, called the quotient space of 𝑊 by 𝑆. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝑄 = (𝑊 /s (𝑊 ~QG 𝑆)) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑊)) ⇒ ⊢ (𝜑 → 𝑄 ∈ LVec) | ||
| Theorem | ecxpid 33389 | The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| ⊢ (𝑋 ∈ 𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴) | ||
| Theorem | qsxpid 33390 | The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
| ⊢ (𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴}) | ||
| Theorem | qusxpid 33391 | The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵)) | ||
| Theorem | qustriv 33392 | The quotient of a group 𝐺 by itself is trivial. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐵)) ⇒ ⊢ (𝐺 ∈ Grp → (Base‘𝑄) = {𝐵}) | ||
| Theorem | qustrivr 33393 | Converse of qustriv 33392. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐻)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵) | ||
| Theorem | znfermltl 33394 | Fermat's little theorem in ℤ/nℤ. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| ⊢ 𝑍 = (ℤ/nℤ‘𝑃) & ⊢ 𝐵 = (Base‘𝑍) & ⊢ ↑ = (.g‘(mulGrp‘𝑍)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) → (𝑃 ↑ 𝐴) = 𝐴) | ||
| Theorem | islinds5 33395* | A set is linearly independent if and only if it has no non-trivial representations of zero. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑂 = (0g‘𝑊) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) | ||
| Theorem | ellspds 33396* | Variation on ellspd 21822. (Contributed by Thierry Arnoux, 18-May-2023.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝑉 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝑉) ↔ ∃𝑎 ∈ (𝐾 ↑m 𝑉)(𝑎 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))))) | ||
| Theorem | 0ellsp 33397 | Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝐵) → 0 ∈ (𝑁‘𝑆)) | ||
| Theorem | 0nellinds 33398 | The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023.) |
| ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ¬ 0 ∈ 𝐹) | ||
| Theorem | rspsnid 33399 | A principal ideal contains the element that generates it. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (𝐾‘{𝐺})) | ||
| Theorem | elrsp 33400* | Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| ⊢ 𝑁 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |