![]() |
Metamath
Proof Explorer Theorem List (p. 334 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 0elcarsg 33301 | The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) β β’ (π β β β (toCaraSigaβπ)) | ||
Theorem | carsguni 33302 | The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) β β’ (π β βͺ (toCaraSigaβπ) = π) | ||
Theorem | elcarsgss 33303 | Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β π΄ β (toCaraSigaβπ)) β β’ (π β π΄ β π) | ||
Theorem | difelcarsg 33304 | The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β π΄ β (toCaraSigaβπ)) β β’ (π β (π β π΄) β (toCaraSigaβπ)) | ||
Theorem | inelcarsg 33305* | The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β π΄ β (toCaraSigaβπ)) & β’ ((π β§ π β π« π β§ π β π« π) β (πβ(π βͺ π)) β€ ((πβπ) +π (πβπ))) & β’ (π β π΅ β (toCaraSigaβπ)) β β’ (π β (π΄ β© π΅) β (toCaraSigaβπ)) | ||
Theorem | unelcarsg 33306* | The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β π΄ β (toCaraSigaβπ)) & β’ ((π β§ π β π« π β§ π β π« π) β (πβ(π βͺ π)) β€ ((πβπ) +π (πβπ))) & β’ (π β π΅ β (toCaraSigaβπ)) β β’ (π β (π΄ βͺ π΅) β (toCaraSigaβπ)) | ||
Theorem | difelcarsg2 33307* | The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β π΄ β (toCaraSigaβπ)) & β’ ((π β§ π β π« π β§ π β π« π) β (πβ(π βͺ π)) β€ ((πβπ) +π (πβπ))) & β’ (π β π΅ β (toCaraSigaβπ)) β β’ (π β (π΄ β π΅) β (toCaraSigaβπ)) | ||
Theorem | carsgmon 33308* | Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β π΄ β π΅) & β’ (π β π΅ β π« π) & β’ ((π β§ π₯ β π¦ β§ π¦ β π« π) β (πβπ₯) β€ (πβπ¦)) β β’ (π β (πβπ΄) β€ (πβπ΅)) | ||
Theorem | carsgsigalem 33309* | Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) β β’ ((π β§ π β π« π β§ π β π« π) β (πβ(π βͺ π)) β€ ((πβπ) +π (πβπ))) | ||
Theorem | fiunelcarsg 33310* | The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ (π β π΄ β Fin) & β’ (π β π΄ β (toCaraSigaβπ)) β β’ (π β βͺ π΄ β (toCaraSigaβπ)) | ||
Theorem | carsgclctunlem1 33311* | Lemma for carsgclctun 33315. (Contributed by Thierry Arnoux, 23-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ (π β π΄ β Fin) & β’ (π β π΄ β (toCaraSigaβπ)) & β’ (π β Disj π¦ β π΄ π¦) & β’ (π β πΈ β π« π) β β’ (π β (πβ(πΈ β© βͺ π΄)) = Ξ£*π¦ β π΄(πβ(πΈ β© π¦))) | ||
Theorem | carsggect 33312* | The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ (π β Β¬ β β π΄) & β’ (π β π΄ βΌ Ο) & β’ (π β π΄ β (toCaraSigaβπ)) & β’ (π β Disj π¦ β π΄ π¦) & β’ ((π β§ π₯ β π¦ β§ π¦ β π« π) β (πβπ₯) β€ (πβπ¦)) β β’ (π β Ξ£*π§ β π΄(πβπ§) β€ (πββͺ π΄)) | ||
Theorem | carsgclctunlem2 33313* | Lemma for carsgclctun 33315. (Contributed by Thierry Arnoux, 25-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ ((π β§ π₯ β π¦ β§ π¦ β π« π) β (πβπ₯) β€ (πβπ¦)) & β’ (π β Disj π β β π΄) & β’ ((π β§ π β β) β π΄ β (toCaraSigaβπ)) & β’ (π β πΈ β π« π) & β’ (π β (πβπΈ) β +β) β β’ (π β ((πβ(πΈ β© βͺ π β β π΄)) +π (πβ(πΈ β βͺ π β β π΄))) β€ (πβπΈ)) | ||
Theorem | carsgclctunlem3 33314* | Lemma for carsgclctun 33315. (Contributed by Thierry Arnoux, 24-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ ((π β§ π₯ β π¦ β§ π¦ β π« π) β (πβπ₯) β€ (πβπ¦)) & β’ (π β π΄ βΌ Ο) & β’ (π β π΄ β (toCaraSigaβπ)) & β’ (π β πΈ β π« π) β β’ (π β ((πβ(πΈ β© βͺ π΄)) +π (πβ(πΈ β βͺ π΄))) β€ (πβπΈ)) | ||
Theorem | carsgclctun 33315* | The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ ((π β§ π₯ β π¦ β§ π¦ β π« π) β (πβπ₯) β€ (πβπ¦)) & β’ (π β π΄ βΌ Ο) & β’ (π β π΄ β (toCaraSigaβπ)) β β’ (π β βͺ π΄ β (toCaraSigaβπ)) | ||
Theorem | carsgsiga 33316* | The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.) |
β’ (π β π β π) & β’ (π β π:π« πβΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ π₯ βΌ Ο β§ π₯ β π« π) β (πββͺ π₯) β€ Ξ£*π¦ β π₯(πβπ¦)) & β’ ((π β§ π₯ β π¦ β§ π¦ β π« π) β (πβπ₯) β€ (πβπ¦)) β β’ (π β (toCaraSigaβπ) β (sigAlgebraβπ)) | ||
Theorem | omsmeas 33317 | The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.) |
β’ π = (toOMeasβπ ) & β’ π = (toCaraSigaβπ) & β’ (π β π β π) & β’ (π β π :πβΆ(0[,]+β)) & β’ (π β β β dom π ) & β’ (π β (π ββ ) = 0) β β’ (π β (π βΎ π) β (measuresβπ)) | ||
Theorem | pmeasmono 33318* | This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
β’ (π β π:π βΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ (π₯ βΌ Ο β§ π₯ β π β§ Disj π¦ β π₯ π¦)) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦)) & β’ (π β π΄ β π ) & β’ (π β π΅ β π ) & β’ (π β (π΅ β π΄) β π ) & β’ (π β π΄ β π΅) β β’ (π β (πβπ΄) β€ (πβπ΅)) | ||
Theorem | pmeasadd 33319* | A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
β’ (π β π:π βΆ(0[,]+β)) & β’ (π β (πββ ) = 0) & β’ ((π β§ (π₯ βΌ Ο β§ π₯ β π β§ Disj π¦ β π₯ π¦)) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦)) & β’ π = {π β π« π« π β£ (β β π β§ βπ₯ β π βπ¦ β π ((π₯ βͺ π¦) β π β§ (π₯ β π¦) β π ))} & β’ (π β π β π) & β’ (π β π΄ βΌ Ο) & β’ ((π β§ π β π΄) β π΅ β π ) & β’ (π β Disj π β π΄ π΅) β β’ (π β (πββͺ π β π΄ π΅) = Ξ£*π β π΄(πβπ΅)) | ||
Theorem | itgeq12dv 33320* | Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
β’ (π β π΄ = π΅) & β’ ((π β§ π₯ β π΄) β πΆ = π·) β β’ (π β β«π΄πΆ dπ₯ = β«π΅π· dπ₯) | ||
Syntax | citgm 33321 | Extend class notation with the (measure) Bochner integral. |
class itgm | ||
Syntax | csitm 33322 | Extend class notation with the integral metric for simple functions. |
class sitm | ||
Syntax | csitg 33323 | Extend class notation with the integral of simple functions. |
class sitg | ||
Definition | df-sitg 33324* |
Define the integral of simple functions from a measurable space
dom π to a generic space π€
equipped with the right scalar
product. π€ will later be required to be a Banach
space.
These simple functions are required to take finitely many different values: this is expressed by ran π β Fin in the definition. Moreover, for each π₯, the pre-image (β‘π β {π₯}) is requested to be measurable, of finite measure. In this definition, (sigaGenβ(TopOpenβπ€)) is the Borel sigma-algebra on π€, and the functions π range over the measurable functions over that Borel algebra. Definition 2.4.1 of [Bogachev] p. 118. (Contributed by Thierry Arnoux, 21-Oct-2017.) |
β’ sitg = (π€ β V, π β βͺ ran measures β¦ (π β {π β (dom πMblFnM(sigaGenβ(TopOpenβπ€))) β£ (ran π β Fin β§ βπ₯ β (ran π β {(0gβπ€)})(πβ(β‘π β {π₯})) β (0[,)+β))} β¦ (π€ Ξ£g (π₯ β (ran π β {(0gβπ€)}) β¦ (((βHomβ(Scalarβπ€))β(πβ(β‘π β {π₯})))( Β·π βπ€)π₯))))) | ||
Definition | df-sitm 33325* | Define the integral metric for simple functions, as the integral of the distances between the function values. Since distances take nonnegative values in β*, the range structure for this integral is (β*π βΎs (0[,]+β)). See definition 2.3.1 of [Bogachev] p. 116. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
β’ sitm = (π€ β V, π β βͺ ran measures β¦ (π β dom (π€sitgπ), π β dom (π€sitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ€)π)))) | ||
Theorem | sitgval 33326* | Value of the simple function integral builder for a given space π and measure π. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) β β’ (π β (πsitgπ) = (π β {π β (dom πMblFnMπ) β£ (ran π β Fin β§ βπ₯ β (ran π β { 0 })(πβ(β‘π β {π₯})) β (0[,)+β))} β¦ (π Ξ£g (π₯ β (ran π β { 0 }) β¦ ((π»β(πβ(β‘π β {π₯}))) Β· π₯))))) | ||
Theorem | issibf 33327* | The predicate "πΉ is a simple function" relative to the Bochner integral. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) β β’ (π β (πΉ β dom (πsitgπ) β (πΉ β (dom πMblFnMπ) β§ ran πΉ β Fin β§ βπ₯ β (ran πΉ β { 0 })(πβ(β‘πΉ β {π₯})) β (0[,)+β)))) | ||
Theorem | sibf0 33328 | The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β π β TopSp) & β’ (π β π β Mnd) β β’ (π β (βͺ dom π Γ { 0 }) β dom (πsitgπ)) | ||
Theorem | sibfmbl 33329 | A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) β β’ (π β πΉ β (dom πMblFnMπ)) | ||
Theorem | sibff 33330 | A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) β β’ (π β πΉ:βͺ dom πβΆβͺ π½) | ||
Theorem | sibfrn 33331 | A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) β β’ (π β ran πΉ β Fin) | ||
Theorem | sibfima 33332 | Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) β β’ ((π β§ π΄ β (ran πΉ β { 0 })) β (πβ(β‘πΉ β {π΄})) β (0[,)+β)) | ||
Theorem | sibfinima 33333 | The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β πΊ β dom (πsitgπ)) & β’ (π β π β TopSp) & β’ (π β π½ β Fre) β β’ (((π β§ π β ran πΉ β§ π β ran πΊ) β§ (π β 0 β¨ π β 0 )) β (πβ((β‘πΉ β {π}) β© (β‘πΊ β {π}))) β (0[,)+β)) | ||
Theorem | sibfof 33334 | Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ πΆ = (BaseβπΎ) & β’ (π β π β TopSp) & β’ (π β + :(π΅ Γ π΅)βΆπΆ) & β’ (π β πΊ β dom (πsitgπ)) & β’ (π β πΎ β TopSp) & β’ (π β π½ β Fre) & β’ (π β ( 0 + 0 ) = (0gβπΎ)) β β’ (π β (πΉ βf + πΊ) β dom (πΎsitgπ)) | ||
Theorem | sitgfval 33335* | Value of the Bochner integral for a simple function πΉ. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) β β’ (π β ((πsitgπ)βπΉ) = (π Ξ£g (π₯ β (ran πΉ β { 0 }) β¦ ((π»β(πβ(β‘πΉ β {π₯}))) Β· π₯)))) | ||
Theorem | sitgclg 33336* | Closure of the Bochner integral on simple functions, generic version. See sitgclbn 33337 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ πΊ = (Scalarβπ) & β’ π· = ((distβπΊ) βΎ ((BaseβπΊ) Γ (BaseβπΊ))) & β’ (π β π β TopSp) & β’ (π β π β CMnd) & β’ (π β (Scalarβπ) β βExt ) & β’ ((π β§ π β (π» β (0[,)+β)) β§ π₯ β π΅) β (π Β· π₯) β π΅) β β’ (π β ((πsitgπ)βπΉ) β π΅) | ||
Theorem | sitgclbn 33337 | Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β π β Ban) & β’ (π β (Scalarβπ) β βExt ) β β’ (π β ((πsitgπ)βπΉ) β π΅) | ||
Theorem | sitgclcn 33338 | Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the complex numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β π β Ban) & β’ (π β (Scalarβπ) = βfld) β β’ (π β ((πsitgπ)βπΉ) β π΅) | ||
Theorem | sitgclre 33339 | Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β π β Ban) & β’ (π β (Scalarβπ) = βfld) β β’ (π β ((πsitgπ)βπΉ) β π΅) | ||
Theorem | sitg0 33340 | The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β π β TopSp) & β’ (π β π β Mnd) β β’ (π β ((πsitgπ)β(βͺ dom π Γ { 0 })) = 0 ) | ||
Theorem | sitgf 33341* | The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ ((π β§ π β dom (πsitgπ)) β ((πsitgπ)βπ) β π΅) β β’ (π β (πsitgπ):dom (πsitgπ)βΆπ΅) | ||
Theorem | sitgaddlemb 33342 | Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.) |
β’ π΅ = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ π = (sigaGenβπ½) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ) & β’ π» = (βHomβ(Scalarβπ)) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β π β TopSp) & β’ (π β (π βΎv (π» β (0[,)+β))) β SLMod) & β’ (π β π½ β Fre) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β πΊ β dom (πsitgπ)) & β’ (π β (Scalarβπ) β βExt ) & β’ + = (+gβπ) β β’ ((π β§ π β ((ran πΉ Γ ran πΊ) β {β¨ 0 , 0 β©})) β ((π»β(πβ((β‘πΉ β {(1st βπ)}) β© (β‘πΊ β {(2nd βπ)})))) Β· (2nd βπ)) β π΅) | ||
Theorem | sitmval 33343* | Value of the simple function integral metric for a given space π and measure π. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π· = (distβπ) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) β β’ (π β (πsitmπ) = (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf π·π)))) | ||
Theorem | sitmfval 33344 | Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π· = (distβπ) & β’ (π β π β π) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β πΊ β dom (πsitgπ)) β β’ (π β (πΉ(πsitmπ)πΊ) = (((β*π βΎs (0[,]+β))sitgπ)β(πΉ βf π·πΊ))) | ||
Theorem | sitmcl 33345 | Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
β’ (π β π β Mnd) & β’ (π β π β βMetSp) & β’ (π β π β βͺ ran measures) & β’ (π β πΉ β dom (πsitgπ)) & β’ (π β πΊ β dom (πsitgπ)) β β’ (π β (πΉ(πsitmπ)πΊ) β (0[,]+β)) | ||
Theorem | sitmf 33346 | The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ (π β π β Mnd) & β’ (π β π β βMetSp) & β’ (π β π β βͺ ran measures) β β’ (π β (πsitmπ):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β)) | ||
Definition | df-itgm 33347* |
Define the Bochner integral as the extension by continuity of the
Bochnel integral for simple functions.
Bogachev first defines 'fundamental in the mean' sequences, in definition 2.3.1 of [Bogachev] p. 116, and notes that those are actually Cauchy sequences for the pseudometric (π€sitmπ). He then defines the Bochner integral in chapter 2.4.4 in [Bogachev] p. 118. The definition of the Lebesgue integral, df-itg 25139. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
β’ itgm = (π€ β V, π β βͺ ran measures β¦ (((metUnifβ(π€sitmπ))CnExt(UnifStβπ€))β(π€sitgπ))) | ||
Theorem | oddpwdc 33348* | Lemma for eulerpart 33376. The function πΉ that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) β β’ πΉ:(π½ Γ β0)β1-1-ontoββ | ||
Theorem | oddpwdcv 33349* | Lemma for eulerpart 33376: value of the πΉ function. (Contributed by Thierry Arnoux, 9-Sep-2017.) |
β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) β β’ (π β (π½ Γ β0) β (πΉβπ) = ((2β(2nd βπ)) Β· (1st βπ))) | ||
Theorem | eulerpartlemsv1 33350* | Lemma for eulerpart 33376. Value of the sum of a partition π΄. (Contributed by Thierry Arnoux, 26-Aug-2018.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ (π΄ β ((β0 βm β) β© π ) β (πβπ΄) = Ξ£π β β ((π΄βπ) Β· π)) | ||
Theorem | eulerpartlemelr 33351* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ (π΄ β ((β0 βm β) β© π ) β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin)) | ||
Theorem | eulerpartlemsv2 33352* | Lemma for eulerpart 33376. Value of the sum of a finite partition π΄ (Contributed by Thierry Arnoux, 19-Aug-2018.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ (π΄ β ((β0 βm β) β© π ) β (πβπ΄) = Ξ£π β (β‘π΄ β β)((π΄βπ) Β· π)) | ||
Theorem | eulerpartlemsf 33353* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ π:((β0 βm β) β© π )βΆβ0 | ||
Theorem | eulerpartlems 33354* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ ((π΄ β ((β0 βm β) β© π ) β§ π‘ β (β€β₯β((πβπ΄) + 1))) β (π΄βπ‘) = 0) | ||
Theorem | eulerpartlemsv3 33355* | Lemma for eulerpart 33376. Value of the sum of a finite partition π΄ (Contributed by Thierry Arnoux, 19-Aug-2018.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ (π΄ β ((β0 βm β) β© π ) β (πβπ΄) = Ξ£π β (1...(πβπ΄))((π΄βπ) Β· π)) | ||
Theorem | eulerpartlemgc 33356* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 9-Aug-2018.) |
β’ π = {π β£ (β‘π β β) β Fin} & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ ((π΄ β ((β0 βm β) β© π ) β§ (π‘ β β β§ π β (bitsβ(π΄βπ‘)))) β ((2βπ) Β· π‘) β€ (πβπ΄)) | ||
Theorem | eulerpartleme 33357* | Lemma for eulerpart 33376. (Contributed by Mario Carneiro, 26-Jan-2015.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} β β’ (π΄ β π β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin β§ Ξ£π β β ((π΄βπ) Β· π) = π)) | ||
Theorem | eulerpartlemv 33358* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 19-Aug-2018.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} β β’ (π΄ β π β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin β§ Ξ£π β (β‘π΄ β β)((π΄βπ) Β· π) = π)) | ||
Theorem | eulerpartlemo 33359* | Lemma for eulerpart 33376: π is the set of odd partitions of π. (Contributed by Thierry Arnoux, 10-Aug-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} β β’ (π΄ β π β (π΄ β π β§ βπ β (β‘π΄ β β) Β¬ 2 β₯ π)) | ||
Theorem | eulerpartlemd 33360* | Lemma for eulerpart 33376: π· is the set of distinct part. of π. (Contributed by Thierry Arnoux, 11-Aug-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} β β’ (π΄ β π· β (π΄ β π β§ (π΄ β β) β {0, 1})) | ||
Theorem | eulerpartlem1 33361* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) β β’ π:π»β1-1-ontoβ(π« (π½ Γ β0) β© Fin) | ||
Theorem | eulerpartlemb 33362* | Lemma for eulerpart 33376. The set of all partitions of π is finite. (Contributed by Mario Carneiro, 26-Jan-2015.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) β β’ π β Fin | ||
Theorem | eulerpartlemt0 33363* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} β β’ (π΄ β (π β© π ) β (π΄ β (β0 βm β) β§ (β‘π΄ β β) β Fin β§ (β‘π΄ β β) β π½)) | ||
Theorem | eulerpartlemf 33364* | Lemma for eulerpart 33376: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} β β’ ((π΄ β (π β© π ) β§ π‘ β (β β π½)) β (π΄βπ‘) = 0) | ||
Theorem | eulerpartlemt 33365* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} β β’ ((β0 βm π½) β© π ) = ran (π β (π β© π ) β¦ (π βΎ π½)) | ||
Theorem | eulerpartgbij 33366* | Lemma for eulerpart 33376: The πΊ function is a bijection. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) β β’ πΊ:(π β© π )β1-1-ontoβ(({0, 1} βm β) β© π ) | ||
Theorem | eulerpartlemgv 33367* | Lemma for eulerpart 33376: value of the function πΊ. (Contributed by Thierry Arnoux, 13-Nov-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) β β’ (π΄ β (π β© π ) β (πΊβπ΄) = ((πββ)β(πΉ β (πβ(bits β (π΄ βΎ π½)))))) | ||
Theorem | eulerpartlemr 33368* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 13-Nov-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) β β’ π = ((π β© π ) β© π) | ||
Theorem | eulerpartlemmf 33369* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) β β’ (π΄ β (π β© π ) β (bits β (π΄ βΎ π½)) β π») | ||
Theorem | eulerpartlemgvv 33370* | Lemma for eulerpart 33376: value of the function πΊ evaluated. (Contributed by Thierry Arnoux, 10-Aug-2018.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) β β’ ((π΄ β (π β© π ) β§ π΅ β β) β ((πΊβπ΄)βπ΅) = if(βπ‘ β β βπ β (bitsβ(π΄βπ‘))((2βπ) Β· π‘) = π΅, 1, 0)) | ||
Theorem | eulerpartlemgu 33371* | Lemma for eulerpart 33376: Rewriting the π set for an odd partition Note that interestingly, this proof reuses marypha2lem2 9430. (Contributed by Thierry Arnoux, 10-Aug-2018.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) & β’ π = βͺ π‘ β ((β‘π΄ β β) β© π½)({π‘} Γ (bitsβ(π΄βπ‘))) β β’ (π΄ β (π β© π ) β π = {β¨π‘, πβ© β£ (π‘ β ((β‘π΄ β β) β© π½) β§ π β ((bits β π΄)βπ‘))}) | ||
Theorem | eulerpartlemgh 33372* | Lemma for eulerpart 33376: The πΉ function is a bijection on the π subsets. (Contributed by Thierry Arnoux, 15-Aug-2018.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) & β’ π = βͺ π‘ β ((β‘π΄ β β) β© π½)({π‘} Γ (bitsβ(π΄βπ‘))) β β’ (π΄ β (π β© π ) β (πΉ βΎ π):πβ1-1-ontoβ{π β β β£ βπ‘ β β βπ β (bitsβ(π΄βπ‘))((2βπ) Β· π‘) = π}) | ||
Theorem | eulerpartlemgf 33373* | Lemma for eulerpart 33376: Images under πΊ have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) β β’ (π΄ β (π β© π ) β (β‘(πΊβπ΄) β β) β Fin) | ||
Theorem | eulerpartlemgs2 33374* | Lemma for eulerpart 33376: The πΊ function also preserves partition sums. (Contributed by Thierry Arnoux, 10-Sep-2017.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ (π΄ β (π β© π ) β (πβ(πΊβπ΄)) = (πβπ΄)) | ||
Theorem | eulerpartlemn 33375* | Lemma for eulerpart 33376. (Contributed by Thierry Arnoux, 30-Aug-2018.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} & β’ π½ = {π§ β β β£ Β¬ 2 β₯ π§} & β’ πΉ = (π₯ β π½, π¦ β β0 β¦ ((2βπ¦) Β· π₯)) & β’ π» = {π β ((π« β0 β© Fin) βm π½) β£ (π supp β ) β Fin} & β’ π = (π β π» β¦ {β¨π₯, π¦β© β£ (π₯ β π½ β§ π¦ β (πβπ₯))}) & β’ π = {π β£ (β‘π β β) β Fin} & β’ π = {π β (β0 βm β) β£ (β‘π β β) β π½} & β’ πΊ = (π β (π β© π ) β¦ ((πββ)β(πΉ β (πβ(bits β (π βΎ π½)))))) & β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) β β’ (πΊ βΎ π):πβ1-1-ontoβπ· | ||
Theorem | eulerpart 33376* | Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let π be the set of all partitions of π, represented as multisets of positive integers, which is to say functions from β to β0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals π. Then the set π of all partitions that only consist of odd numbers and the set π· of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
β’ π = {π β (β0 βm β) β£ ((β‘π β β) β Fin β§ Ξ£π β β ((πβπ) Β· π) = π)} & β’ π = {π β π β£ βπ β (β‘π β β) Β¬ 2 β₯ π} & β’ π· = {π β π β£ βπ β β (πβπ) β€ 1} β β’ (β―βπ) = (β―βπ·) | ||
Syntax | csseq 33377 | Sequences defined by strong recursion. |
class seqstr | ||
Definition | df-sseq 33378* | Define a builder for sequences by strong recursion, i.e., by computing the value of the n-th element of the sequence from all preceding elements and not just the previous one. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
β’ seqstr = (π β V, π β V β¦ (π βͺ (lastS β seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πβπ₯)ββ©)), (β0 Γ {(π ++ β¨β(πβπ)ββ©)}))))) | ||
Theorem | subiwrd 33379 | Lemma for sseqp1 33389. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (π β π β V) & β’ (π β πΉ:β0βΆπ) & β’ (π β π β β0) β β’ (π β (πΉ βΎ (0..^π)) β Word π) | ||
Theorem | subiwrdlen 33380 | Length of a subword of an infinite word. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (π β π β V) & β’ (π β πΉ:β0βΆπ) & β’ (π β π β β0) β β’ (π β (β―β(πΉ βΎ (0..^π))) = π) | ||
Theorem | iwrdsplit 33381 | Lemma for sseqp1 33389. (Contributed by Thierry Arnoux, 25-Apr-2019.) (Proof shortened by AV, 14-Oct-2022.) |
β’ (π β π β V) & β’ (π β πΉ:β0βΆπ) & β’ (π β π β β0) β β’ (π β (πΉ βΎ (0..^(π + 1))) = ((πΉ βΎ (0..^π)) ++ β¨β(πΉβπ)ββ©)) | ||
Theorem | sseqval 33382* | Value of the strong sequence builder function. The set π represents here the words of length greater than or equal to the lenght of the initial sequence π. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) β β’ (π β (πseqstrπΉ) = (π βͺ (lastS β seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0 Γ {(π ++ β¨β(πΉβπ)ββ©)}))))) | ||
Theorem | sseqfv1 33383 | Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) & β’ (π β π β (0..^(β―βπ))) β β’ (π β ((πseqstrπΉ)βπ) = (πβπ)) | ||
Theorem | sseqfn 33384 | A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) β β’ (π β (πseqstrπΉ) Fn β0) | ||
Theorem | sseqmw 33385 | Lemma for sseqf 33386 amd sseqp1 33389. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) β β’ (π β π β π) | ||
Theorem | sseqf 33386 | A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) β β’ (π β (πseqstrπΉ):β0βΆπ) | ||
Theorem | sseqfres 33387 | The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) β β’ (π β ((πseqstrπΉ) βΎ (0..^(β―βπ))) = π) | ||
Theorem | sseqfv2 33388* | Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) & β’ (π β π β (β€β₯β(β―βπ))) β β’ (π β ((πseqstrπΉ)βπ) = (lastSβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0 Γ {(π ++ β¨β(πΉβπ)ββ©)}))βπ))) | ||
Theorem | sseqp1 33389 | Value of the strong sequence builder function at a successor. (Contributed by Thierry Arnoux, 24-Apr-2019.) |
β’ (π β π β V) & β’ (π β π β Word π) & β’ π = (Word π β© (β‘β― β (β€β₯β(β―βπ)))) & β’ (π β πΉ:πβΆπ) & β’ (π β π β (β€β₯β(β―βπ))) β β’ (π β ((πseqstrπΉ)βπ) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) | ||
Syntax | cfib 33390 | The Fibonacci sequence. |
class Fibci | ||
Definition | df-fib 33391 | Define the Fibonacci sequence, where that each element is the sum of the two preceding ones, starting from 0 and 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ Fibci = (β¨β01ββ©seqstr(π€ β (Word β0 β© (β‘β― β (β€β₯β2))) β¦ ((π€β((β―βπ€) β 2)) + (π€β((β―βπ€) β 1))))) | ||
Theorem | fiblem 33392 | Lemma for fib0 33393, fib1 33394 and fibp1 33395. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (π€ β (Word β0 β© (β‘β― β (β€β₯β2))) β¦ ((π€β((β―βπ€) β 2)) + (π€β((β―βπ€) β 1)))):(Word β0 β© (β‘β― β (β€β₯β(β―ββ¨β01ββ©))))βΆβ0 | ||
Theorem | fib0 33393 | Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ0) = 0 | ||
Theorem | fib1 33394 | Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ1) = 1 | ||
Theorem | fibp1 33395 | Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (π β β β (Fibciβ(π + 1)) = ((Fibciβ(π β 1)) + (Fibciβπ))) | ||
Theorem | fib2 33396 | Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ2) = 1 | ||
Theorem | fib3 33397 | Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ3) = 2 | ||
Theorem | fib4 33398 | Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ4) = 3 | ||
Theorem | fib5 33399 | Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ5) = 5 | ||
Theorem | fib6 33400 | Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
β’ (Fibciβ6) = 8 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |