| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fracval | Structured version Visualization version GIF version | ||
| Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| Ref | Expression |
|---|---|
| fracval | ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frac 33261 | . . 3 ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 3 | fveq2 6817 | . . . . 5 ⊢ (𝑟 = 𝑅 → (RLReg‘𝑟) = (RLReg‘𝑅)) | |
| 4 | 2, 3 | oveq12d 7359 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑟 = 𝑅) → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅))) |
| 6 | id 22 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
| 7 | ovexd 7376 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) ∈ V) | |
| 8 | 1, 5, 6, 7 | fvmptd2 6932 | . 2 ⊢ (𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))) |
| 9 | fvprc 6809 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = ∅) | |
| 10 | reldmrloc 33216 | . . . 4 ⊢ Rel dom RLocal | |
| 11 | 10 | ovprc1 7380 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) = ∅) |
| 12 | 9, 11 | eqtr4d 2769 | . 2 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))) |
| 13 | 8, 12 | pm2.61i 182 | 1 ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 ‘cfv 6476 (class class class)co 7341 RLRegcrlreg 20601 RLocal crloc 33213 Frac cfrac 33260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rloc 33215 df-frac 33261 |
| This theorem is referenced by: fracbas 33263 fracf1 33265 fracfld 33266 zringfrac 33511 |
| Copyright terms: Public domain | W3C validator |