| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fracval | Structured version Visualization version GIF version | ||
| Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| Ref | Expression |
|---|---|
| fracval | ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frac 33261 | . . 3 ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 3 | fveq2 6826 | . . . . 5 ⊢ (𝑟 = 𝑅 → (RLReg‘𝑟) = (RLReg‘𝑅)) | |
| 4 | 2, 3 | oveq12d 7371 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑟 = 𝑅) → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅))) |
| 6 | id 22 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
| 7 | ovexd 7388 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) ∈ V) | |
| 8 | 1, 5, 6, 7 | fvmptd2 6942 | . 2 ⊢ (𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))) |
| 9 | fvprc 6818 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = ∅) | |
| 10 | reldmrloc 33216 | . . . 4 ⊢ Rel dom RLocal | |
| 11 | 10 | ovprc1 7392 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) = ∅) |
| 12 | 9, 11 | eqtr4d 2767 | . 2 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))) |
| 13 | 8, 12 | pm2.61i 182 | 1 ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 RLRegcrlreg 20595 RLocal crloc 33213 Frac cfrac 33260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rloc 33215 df-frac 33261 |
| This theorem is referenced by: fracbas 33263 fracf1 33265 fracfld 33266 zringfrac 33510 |
| Copyright terms: Public domain | W3C validator |