Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fracval Structured version   Visualization version   GIF version

Theorem fracval 33262
Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.)
Assertion
Ref Expression
fracval ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))

Proof of Theorem fracval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-frac 33261 . . 3 Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟)))
2 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
3 fveq2 6817 . . . . 5 (𝑟 = 𝑅 → (RLReg‘𝑟) = (RLReg‘𝑅))
42, 3oveq12d 7359 . . . 4 (𝑟 = 𝑅 → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅)))
54adantl 481 . . 3 ((𝑅 ∈ V ∧ 𝑟 = 𝑅) → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅)))
6 id 22 . . 3 (𝑅 ∈ V → 𝑅 ∈ V)
7 ovexd 7376 . . 3 (𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) ∈ V)
81, 5, 6, 7fvmptd2 6932 . 2 (𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)))
9 fvprc 6809 . . 3 𝑅 ∈ V → ( Frac ‘𝑅) = ∅)
10 reldmrloc 33216 . . . 4 Rel dom RLocal
1110ovprc1 7380 . . 3 𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) = ∅)
129, 11eqtr4d 2769 . 2 𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)))
138, 12pm2.61i 182 1 ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  cfv 6476  (class class class)co 7341  RLRegcrlreg 20601   RLocal crloc 33213   Frac cfrac 33260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-rloc 33215  df-frac 33261
This theorem is referenced by:  fracbas  33263  fracf1  33265  fracfld  33266  zringfrac  33511
  Copyright terms: Public domain W3C validator