![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fracval | Structured version Visualization version GIF version |
Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
Ref | Expression |
---|---|
fracval | ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frac 33270 | . . 3 ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) | |
2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
3 | fveq2 6920 | . . . . 5 ⊢ (𝑟 = 𝑅 → (RLReg‘𝑟) = (RLReg‘𝑅)) | |
4 | 2, 3 | oveq12d 7466 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅))) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑟 = 𝑅) → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅))) |
6 | id 22 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 ∈ V) | |
7 | ovexd 7483 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) ∈ V) | |
8 | 1, 5, 6, 7 | fvmptd2 7037 | . 2 ⊢ (𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))) |
9 | fvprc 6912 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = ∅) | |
10 | reldmrloc 33229 | . . . 4 ⊢ Rel dom RLocal | |
11 | 10 | ovprc1 7487 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) = ∅) |
12 | 9, 11 | eqtr4d 2783 | . 2 ⊢ (¬ 𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))) |
13 | 8, 12 | pm2.61i 182 | 1 ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 RLRegcrlreg 20713 RLocal crloc 33226 Frac cfrac 33269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rloc 33228 df-frac 33270 |
This theorem is referenced by: fracbas 33272 fracf1 33274 fracfld 33275 zringfrac 33547 |
Copyright terms: Public domain | W3C validator |