Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fracval Structured version   Visualization version   GIF version

Theorem fracval 33303
Description: Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.)
Assertion
Ref Expression
fracval ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))

Proof of Theorem fracval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-frac 33302 . . 3 Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟)))
2 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
3 fveq2 6881 . . . . 5 (𝑟 = 𝑅 → (RLReg‘𝑟) = (RLReg‘𝑅))
42, 3oveq12d 7428 . . . 4 (𝑟 = 𝑅 → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅)))
54adantl 481 . . 3 ((𝑅 ∈ V ∧ 𝑟 = 𝑅) → (𝑟 RLocal (RLReg‘𝑟)) = (𝑅 RLocal (RLReg‘𝑅)))
6 id 22 . . 3 (𝑅 ∈ V → 𝑅 ∈ V)
7 ovexd 7445 . . 3 (𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) ∈ V)
81, 5, 6, 7fvmptd2 6999 . 2 (𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)))
9 fvprc 6873 . . 3 𝑅 ∈ V → ( Frac ‘𝑅) = ∅)
10 reldmrloc 33257 . . . 4 Rel dom RLocal
1110ovprc1 7449 . . 3 𝑅 ∈ V → (𝑅 RLocal (RLReg‘𝑅)) = ∅)
129, 11eqtr4d 2774 . 2 𝑅 ∈ V → ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)))
138, 12pm2.61i 182 1 ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cfv 6536  (class class class)co 7410  RLRegcrlreg 20656   RLocal crloc 33254   Frac cfrac 33301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-rloc 33256  df-frac 33302
This theorem is referenced by:  fracbas  33304  fracf1  33306  fracfld  33307  zringfrac  33574
  Copyright terms: Public domain W3C validator