Detailed syntax breakdown of Definition df-gfoo
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cgfo 35591 | 
. 2
class
GF∞ | 
| 2 |   | vp | 
. . 3
setvar 𝑝 | 
| 3 |   | cprime 16691 | 
. . 3
class
ℙ | 
| 4 |   | vr | 
. . . 4
setvar 𝑟 | 
| 5 | 2 | cv 1538 | 
. . . . 5
class 𝑝 | 
| 6 |   | czn 21476 | 
. . . . 5
class
ℤ/nℤ | 
| 7 | 5, 6 | cfv 6542 | 
. . . 4
class
(ℤ/nℤ‘𝑝) | 
| 8 | 4 | cv 1538 | 
. . . . 5
class 𝑟 | 
| 9 |   | vn | 
. . . . . 6
setvar 𝑛 | 
| 10 |   | cn 12249 | 
. . . . . 6
class
ℕ | 
| 11 |   | vs | 
. . . . . . . 8
setvar 𝑠 | 
| 12 |   | cpl1 22141 | 
. . . . . . . . 9
class
Poly1 | 
| 13 | 8, 12 | cfv 6542 | 
. . . . . . . 8
class
(Poly1‘𝑟) | 
| 14 |   | vx | 
. . . . . . . . 9
setvar 𝑥 | 
| 15 |   | cv1 22140 | 
. . . . . . . . . 10
class
var1 | 
| 16 | 8, 15 | cfv 6542 | 
. . . . . . . . 9
class
(var1‘𝑟) | 
| 17 | 9 | cv 1538 | 
. . . . . . . . . . . 12
class 𝑛 | 
| 18 |   | cexp 14085 | 
. . . . . . . . . . . 12
class
↑ | 
| 19 | 5, 17, 18 | co 7414 | 
. . . . . . . . . . 11
class (𝑝↑𝑛) | 
| 20 | 14 | cv 1538 | 
. . . . . . . . . . 11
class 𝑥 | 
| 21 | 11 | cv 1538 | 
. . . . . . . . . . . . 13
class 𝑠 | 
| 22 |   | cmgp 20106 | 
. . . . . . . . . . . . 13
class
mulGrp | 
| 23 | 21, 22 | cfv 6542 | 
. . . . . . . . . . . 12
class
(mulGrp‘𝑠) | 
| 24 |   | cmg 19055 | 
. . . . . . . . . . . 12
class
.g | 
| 25 | 23, 24 | cfv 6542 | 
. . . . . . . . . . 11
class
(.g‘(mulGrp‘𝑠)) | 
| 26 | 19, 20, 25 | co 7414 | 
. . . . . . . . . 10
class ((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥) | 
| 27 |   | csg 18923 | 
. . . . . . . . . . 11
class
-g | 
| 28 | 21, 27 | cfv 6542 | 
. . . . . . . . . 10
class
(-g‘𝑠) | 
| 29 | 26, 20, 28 | co 7414 | 
. . . . . . . . 9
class (((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) | 
| 30 | 14, 16, 29 | csb 3881 | 
. . . . . . . 8
class
⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) | 
| 31 | 11, 13, 30 | csb 3881 | 
. . . . . . 7
class
⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) | 
| 32 | 31 | csn 4608 | 
. . . . . 6
class
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)} | 
| 33 | 9, 10, 32 | cmpt 5207 | 
. . . . 5
class (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}) | 
| 34 |   | cpsl 35575 | 
. . . . 5
class 
polySplitLim | 
| 35 | 8, 33, 34 | co 7414 | 
. . . 4
class (𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)})) | 
| 36 | 4, 7, 35 | csb 3881 | 
. . 3
class
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)})) | 
| 37 | 2, 3, 36 | cmpt 5207 | 
. 2
class (𝑝 ∈ ℙ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | 
| 38 | 1, 37 | wceq 1539 | 
1
wff
GF∞ = (𝑝 ∈ ℙ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |