Detailed syntax breakdown of Definition df-gfoo
| Step | Hyp | Ref
| Expression |
| 1 | | cgfo 35638 |
. 2
class
GF∞ |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | cprime 16647 |
. . 3
class
ℙ |
| 4 | | vr |
. . . 4
setvar 𝑟 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑝 |
| 6 | | czn 21418 |
. . . . 5
class
ℤ/nℤ |
| 7 | 5, 6 | cfv 6519 |
. . . 4
class
(ℤ/nℤ‘𝑝) |
| 8 | 4 | cv 1539 |
. . . . 5
class 𝑟 |
| 9 | | vn |
. . . . . 6
setvar 𝑛 |
| 10 | | cn 12197 |
. . . . . 6
class
ℕ |
| 11 | | vs |
. . . . . . . 8
setvar 𝑠 |
| 12 | | cpl1 22067 |
. . . . . . . . 9
class
Poly1 |
| 13 | 8, 12 | cfv 6519 |
. . . . . . . 8
class
(Poly1‘𝑟) |
| 14 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 15 | | cv1 22066 |
. . . . . . . . . 10
class
var1 |
| 16 | 8, 15 | cfv 6519 |
. . . . . . . . 9
class
(var1‘𝑟) |
| 17 | 9 | cv 1539 |
. . . . . . . . . . . 12
class 𝑛 |
| 18 | | cexp 14036 |
. . . . . . . . . . . 12
class
↑ |
| 19 | 5, 17, 18 | co 7394 |
. . . . . . . . . . 11
class (𝑝↑𝑛) |
| 20 | 14 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 21 | 11 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑠 |
| 22 | | cmgp 20055 |
. . . . . . . . . . . . 13
class
mulGrp |
| 23 | 21, 22 | cfv 6519 |
. . . . . . . . . . . 12
class
(mulGrp‘𝑠) |
| 24 | | cmg 19005 |
. . . . . . . . . . . 12
class
.g |
| 25 | 23, 24 | cfv 6519 |
. . . . . . . . . . 11
class
(.g‘(mulGrp‘𝑠)) |
| 26 | 19, 20, 25 | co 7394 |
. . . . . . . . . 10
class ((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥) |
| 27 | | csg 18873 |
. . . . . . . . . . 11
class
-g |
| 28 | 21, 27 | cfv 6519 |
. . . . . . . . . 10
class
(-g‘𝑠) |
| 29 | 26, 20, 28 | co 7394 |
. . . . . . . . 9
class (((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) |
| 30 | 14, 16, 29 | csb 3870 |
. . . . . . . 8
class
⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) |
| 31 | 11, 13, 30 | csb 3870 |
. . . . . . 7
class
⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥) |
| 32 | 31 | csn 4597 |
. . . . . 6
class
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)} |
| 33 | 9, 10, 32 | cmpt 5196 |
. . . . 5
class (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}) |
| 34 | | cpsl 35622 |
. . . . 5
class
polySplitLim |
| 35 | 8, 33, 34 | co 7394 |
. . . 4
class (𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)})) |
| 36 | 4, 7, 35 | csb 3870 |
. . 3
class
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)})) |
| 37 | 2, 3, 36 | cmpt 5196 |
. 2
class (𝑝 ∈ ℙ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |
| 38 | 1, 37 | wceq 1540 |
1
wff
GF∞ = (𝑝 ∈ ℙ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |