Detailed syntax breakdown of Definition df-eqp
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ceqp 35589 | 
. 2
class
~Qp | 
| 2 |   | vp | 
. . 3
setvar 𝑝 | 
| 3 |   | cprime 16689 | 
. . 3
class
ℙ | 
| 4 |   | vf | 
. . . . . . . 8
setvar 𝑓 | 
| 5 | 4 | cv 1538 | 
. . . . . . 7
class 𝑓 | 
| 6 |   | vg | 
. . . . . . . 8
setvar 𝑔 | 
| 7 | 6 | cv 1538 | 
. . . . . . 7
class 𝑔 | 
| 8 | 5, 7 | cpr 4608 | 
. . . . . 6
class {𝑓, 𝑔} | 
| 9 |   | cz 12595 | 
. . . . . . 7
class
ℤ | 
| 10 |   | cmap 8847 | 
. . . . . . 7
class 
↑m | 
| 11 | 9, 9, 10 | co 7412 | 
. . . . . 6
class (ℤ
↑m ℤ) | 
| 12 | 8, 11 | wss 3931 | 
. . . . 5
wff {𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) | 
| 13 |   | vn | 
. . . . . . . . . . 11
setvar 𝑛 | 
| 14 | 13 | cv 1538 | 
. . . . . . . . . 10
class 𝑛 | 
| 15 | 14 | cneg 11474 | 
. . . . . . . . 9
class -𝑛 | 
| 16 |   | cuz 12859 | 
. . . . . . . . 9
class
ℤ≥ | 
| 17 | 15, 16 | cfv 6540 | 
. . . . . . . 8
class
(ℤ≥‘-𝑛) | 
| 18 |   | vk | 
. . . . . . . . . . . . 13
setvar 𝑘 | 
| 19 | 18 | cv 1538 | 
. . . . . . . . . . . 12
class 𝑘 | 
| 20 | 19 | cneg 11474 | 
. . . . . . . . . . 11
class -𝑘 | 
| 21 | 20, 5 | cfv 6540 | 
. . . . . . . . . 10
class (𝑓‘-𝑘) | 
| 22 | 20, 7 | cfv 6540 | 
. . . . . . . . . 10
class (𝑔‘-𝑘) | 
| 23 |   | cmin 11473 | 
. . . . . . . . . 10
class 
− | 
| 24 | 21, 22, 23 | co 7412 | 
. . . . . . . . 9
class ((𝑓‘-𝑘) − (𝑔‘-𝑘)) | 
| 25 | 2 | cv 1538 | 
. . . . . . . . . 10
class 𝑝 | 
| 26 |   | c1 11137 | 
. . . . . . . . . . . 12
class
1 | 
| 27 |   | caddc 11139 | 
. . . . . . . . . . . 12
class 
+ | 
| 28 | 14, 26, 27 | co 7412 | 
. . . . . . . . . . 11
class (𝑛 + 1) | 
| 29 | 19, 28, 27 | co 7412 | 
. . . . . . . . . 10
class (𝑘 + (𝑛 + 1)) | 
| 30 |   | cexp 14083 | 
. . . . . . . . . 10
class
↑ | 
| 31 | 25, 29, 30 | co 7412 | 
. . . . . . . . 9
class (𝑝↑(𝑘 + (𝑛 + 1))) | 
| 32 |   | cdiv 11901 | 
. . . . . . . . 9
class 
/ | 
| 33 | 24, 31, 32 | co 7412 | 
. . . . . . . 8
class (((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) | 
| 34 | 17, 33, 18 | csu 15703 | 
. . . . . . 7
class
Σ𝑘 ∈
(ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) | 
| 35 | 34, 9 | wcel 2107 | 
. . . . . 6
wff
Σ𝑘 ∈
(ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ | 
| 36 | 35, 13, 9 | wral 3050 | 
. . . . 5
wff
∀𝑛 ∈
ℤ Σ𝑘 ∈
(ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ | 
| 37 | 12, 36 | wa 395 | 
. . . 4
wff ({𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ) | 
| 38 | 37, 4, 6 | copab 5185 | 
. . 3
class
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)} | 
| 39 | 2, 3, 38 | cmpt 5205 | 
. 2
class (𝑝 ∈ ℙ ↦
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) | 
| 40 | 1, 39 | wceq 1539 | 
1
wff ~Qp =
(𝑝 ∈ ℙ ↦
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) |