| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-goel | Structured version Visualization version GIF version | ||
| Description: Define the Godel-set of membership. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅∈𝑔1o) actually means v0 ∈ v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-goel | ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgoe 35338 | . 2 class ∈𝑔 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | com 7887 | . . . 4 class ω | |
| 4 | 3, 3 | cxp 5683 | . . 3 class (ω × ω) |
| 5 | c0 4333 | . . . 4 class ∅ | |
| 6 | 2 | cv 1539 | . . . 4 class 𝑥 |
| 7 | 5, 6 | cop 4632 | . . 3 class 〈∅, 𝑥〉 |
| 8 | 2, 4, 7 | cmpt 5225 | . 2 class (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) |
| 9 | 1, 8 | wceq 1540 | 1 wff ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: goel 35352 |
| Copyright terms: Public domain | W3C validator |