Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-goel | Structured version Visualization version GIF version |
Description: Define the Godel-set of membership. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅∈𝑔1o) actually means v0 ∈ v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-goel | ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgoe 33274 | . 2 class ∈𝑔 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | com 7700 | . . . 4 class ω | |
4 | 3, 3 | cxp 5586 | . . 3 class (ω × ω) |
5 | c0 4261 | . . . 4 class ∅ | |
6 | 2 | cv 1540 | . . . 4 class 𝑥 |
7 | 5, 6 | cop 4572 | . . 3 class 〈∅, 𝑥〉 |
8 | 2, 4, 7 | cmpt 5161 | . 2 class (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) |
9 | 1, 8 | wceq 1541 | 1 wff ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) |
Colors of variables: wff setvar class |
This definition is referenced by: goel 33288 |
Copyright terms: Public domain | W3C validator |