![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goel | Structured version Visualization version GIF version |
Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.) |
Ref | Expression |
---|---|
goel | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7416 | . 2 ⊢ (𝐼∈𝑔𝐽) = (∈𝑔‘⟨𝐼, 𝐽⟩) | |
2 | df-goel 34627 | . . . 4 ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)) |
4 | opeq2 4875 | . . . 4 ⊢ (𝑥 = ⟨𝐼, 𝐽⟩ → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩) | |
5 | 4 | adantl 480 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = ⟨𝐼, 𝐽⟩) → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩) |
6 | opelxpi 5714 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω)) | |
7 | opex 5465 | . . . 4 ⊢ ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V | |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V) |
9 | 3, 5, 6, 8 | fvmptd 7006 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘⟨𝐼, 𝐽⟩) = ⟨∅, ⟨𝐼, 𝐽⟩⟩) |
10 | 1, 9 | eqtrid 2782 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 ⟨cop 4635 ↦ cmpt 5232 × cxp 5675 ‘cfv 6544 (class class class)co 7413 ωcom 7859 ∈𝑔cgoe 34620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7416 df-goel 34627 |
This theorem is referenced by: goelel3xp 34635 goeleq12bg 34636 sat1el2xp 34666 fmla0xp 34670 fmlaomn0 34677 gonan0 34679 goaln0 34680 gonar 34682 goalr 34684 fmla0disjsuc 34685 satfv0fvfmla0 34700 sategoelfvb 34706 prv1n 34718 |
Copyright terms: Public domain | W3C validator |