Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goel Structured version   Visualization version   GIF version

Theorem goel 35369
Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi vj is coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
goel ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)

Proof of Theorem goel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7408 . 2 (𝐼𝑔𝐽) = (∈𝑔‘⟨𝐼, 𝐽⟩)
2 df-goel 35362 . . . 4 𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)
32a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩))
4 opeq2 4850 . . . 4 (𝑥 = ⟨𝐼, 𝐽⟩ → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
54adantl 481 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = ⟨𝐼, 𝐽⟩) → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
6 opelxpi 5691 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
7 opex 5439 . . . 4 ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V
87a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V)
93, 5, 6, 8fvmptd 6993 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘⟨𝐼, 𝐽⟩) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
101, 9eqtrid 2782 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cop 4607  cmpt 5201   × cxp 5652  cfv 6531  (class class class)co 7405  ωcom 7861  𝑔cgoe 35355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-goel 35362
This theorem is referenced by:  goelel3xp  35370  goeleq12bg  35371  sat1el2xp  35401  fmla0xp  35405  fmlaomn0  35412  gonan0  35414  goaln0  35415  gonar  35417  goalr  35419  fmla0disjsuc  35420  satfv0fvfmla0  35435  sategoelfvb  35441  prv1n  35453
  Copyright terms: Public domain W3C validator