![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goel | Structured version Visualization version GIF version |
Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
Ref | Expression |
---|---|
goel | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7451 | . 2 ⊢ (𝐼∈𝑔𝐽) = (∈𝑔‘〈𝐼, 𝐽〉) | |
2 | df-goel 35308 | . . . 4 ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉)) |
4 | opeq2 4898 | . . . 4 ⊢ (𝑥 = 〈𝐼, 𝐽〉 → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) | |
5 | 4 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = 〈𝐼, 𝐽〉) → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) |
6 | opelxpi 5737 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈𝐼, 𝐽〉 ∈ (ω × ω)) | |
7 | opex 5484 | . . . 4 ⊢ 〈∅, 〈𝐼, 𝐽〉〉 ∈ V | |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈∅, 〈𝐼, 𝐽〉〉 ∈ V) |
9 | 3, 5, 6, 8 | fvmptd 7036 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘〈𝐼, 𝐽〉) = 〈∅, 〈𝐼, 𝐽〉〉) |
10 | 1, 9 | eqtrid 2792 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ∈𝑔cgoe 35301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-goel 35308 |
This theorem is referenced by: goelel3xp 35316 goeleq12bg 35317 sat1el2xp 35347 fmla0xp 35351 fmlaomn0 35358 gonan0 35360 goaln0 35361 gonar 35363 goalr 35365 fmla0disjsuc 35366 satfv0fvfmla0 35381 sategoelfvb 35387 prv1n 35399 |
Copyright terms: Public domain | W3C validator |