| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goel | Structured version Visualization version GIF version | ||
| Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| goel | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . 2 ⊢ (𝐼∈𝑔𝐽) = (∈𝑔‘〈𝐼, 𝐽〉) | |
| 2 | df-goel 35334 | . . . 4 ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉)) |
| 4 | opeq2 4841 | . . . 4 ⊢ (𝑥 = 〈𝐼, 𝐽〉 → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = 〈𝐼, 𝐽〉) → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) |
| 6 | opelxpi 5678 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈𝐼, 𝐽〉 ∈ (ω × ω)) | |
| 7 | opex 5427 | . . . 4 ⊢ 〈∅, 〈𝐼, 𝐽〉〉 ∈ V | |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈∅, 〈𝐼, 𝐽〉〉 ∈ V) |
| 9 | 3, 5, 6, 8 | fvmptd 6978 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘〈𝐼, 𝐽〉) = 〈∅, 〈𝐼, 𝐽〉〉) |
| 10 | 1, 9 | eqtrid 2777 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ∈𝑔cgoe 35327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-goel 35334 |
| This theorem is referenced by: goelel3xp 35342 goeleq12bg 35343 sat1el2xp 35373 fmla0xp 35377 fmlaomn0 35384 gonan0 35386 goaln0 35387 gonar 35389 goalr 35391 fmla0disjsuc 35392 satfv0fvfmla0 35407 sategoelfvb 35413 prv1n 35425 |
| Copyright terms: Public domain | W3C validator |