Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goel Structured version   Visualization version   GIF version

Theorem goel 33209
Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi vj is coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
goel ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)

Proof of Theorem goel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7258 . 2 (𝐼𝑔𝐽) = (∈𝑔‘⟨𝐼, 𝐽⟩)
2 df-goel 33202 . . . 4 𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)
32a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩))
4 opeq2 4802 . . . 4 (𝑥 = ⟨𝐼, 𝐽⟩ → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
54adantl 481 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = ⟨𝐼, 𝐽⟩) → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
6 opelxpi 5617 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
7 opex 5373 . . . 4 ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V
87a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V)
93, 5, 6, 8fvmptd 6864 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘⟨𝐼, 𝐽⟩) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
101, 9syl5eq 2791 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  ωcom 7687  𝑔cgoe 33195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-goel 33202
This theorem is referenced by:  goelel3xp  33210  goeleq12bg  33211  sat1el2xp  33241  fmla0xp  33245  fmlaomn0  33252  gonan0  33254  goaln0  33255  gonar  33257  goalr  33259  fmla0disjsuc  33260  satfv0fvfmla0  33275  sategoelfvb  33281  prv1n  33293
  Copyright terms: Public domain W3C validator