| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goel | Structured version Visualization version GIF version | ||
| Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| goel | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7356 | . 2 ⊢ (𝐼∈𝑔𝐽) = (∈𝑔‘〈𝐼, 𝐽〉) | |
| 2 | df-goel 35312 | . . . 4 ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉)) |
| 4 | opeq2 4828 | . . . 4 ⊢ (𝑥 = 〈𝐼, 𝐽〉 → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = 〈𝐼, 𝐽〉) → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) |
| 6 | opelxpi 5660 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈𝐼, 𝐽〉 ∈ (ω × ω)) | |
| 7 | opex 5411 | . . . 4 ⊢ 〈∅, 〈𝐼, 𝐽〉〉 ∈ V | |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈∅, 〈𝐼, 𝐽〉〉 ∈ V) |
| 9 | 3, 5, 6, 8 | fvmptd 6941 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘〈𝐼, 𝐽〉) = 〈∅, 〈𝐼, 𝐽〉〉) |
| 10 | 1, 9 | eqtrid 2776 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 〈cop 4585 ↦ cmpt 5176 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ωcom 7806 ∈𝑔cgoe 35305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-goel 35312 |
| This theorem is referenced by: goelel3xp 35320 goeleq12bg 35321 sat1el2xp 35351 fmla0xp 35355 fmlaomn0 35362 gonan0 35364 goaln0 35365 gonar 35367 goalr 35369 fmla0disjsuc 35370 satfv0fvfmla0 35385 sategoelfvb 35391 prv1n 35403 |
| Copyright terms: Public domain | W3C validator |