| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goel | Structured version Visualization version GIF version | ||
| Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
| Ref | Expression |
|---|---|
| goel | ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7408 | . 2 ⊢ (𝐼∈𝑔𝐽) = (∈𝑔‘〈𝐼, 𝐽〉) | |
| 2 | df-goel 35362 | . . . 4 ⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉)) |
| 4 | opeq2 4850 | . . . 4 ⊢ (𝑥 = 〈𝐼, 𝐽〉 → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = 〈𝐼, 𝐽〉) → 〈∅, 𝑥〉 = 〈∅, 〈𝐼, 𝐽〉〉) |
| 6 | opelxpi 5691 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈𝐼, 𝐽〉 ∈ (ω × ω)) | |
| 7 | opex 5439 | . . . 4 ⊢ 〈∅, 〈𝐼, 𝐽〉〉 ∈ V | |
| 8 | 7 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 〈∅, 〈𝐼, 𝐽〉〉 ∈ V) |
| 9 | 3, 5, 6, 8 | fvmptd 6993 | . 2 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘〈𝐼, 𝐽〉) = 〈∅, 〈𝐼, 𝐽〉〉) |
| 10 | 1, 9 | eqtrid 2782 | 1 ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 〈cop 4607 ↦ cmpt 5201 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ∈𝑔cgoe 35355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-goel 35362 |
| This theorem is referenced by: goelel3xp 35370 goeleq12bg 35371 sat1el2xp 35401 fmla0xp 35405 fmlaomn0 35412 gonan0 35414 goaln0 35415 gonar 35417 goalr 35419 fmla0disjsuc 35420 satfv0fvfmla0 35435 sategoelfvb 35441 prv1n 35453 |
| Copyright terms: Public domain | W3C validator |