Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goel Structured version   Visualization version   GIF version

Theorem goel 35379
Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi vj is coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
goel ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)

Proof of Theorem goel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7349 . 2 (𝐼𝑔𝐽) = (∈𝑔‘⟨𝐼, 𝐽⟩)
2 df-goel 35372 . . . 4 𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)
32a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩))
4 opeq2 4826 . . . 4 (𝑥 = ⟨𝐼, 𝐽⟩ → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
54adantl 481 . . 3 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑥 = ⟨𝐼, 𝐽⟩) → ⟨∅, 𝑥⟩ = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
6 opelxpi 5653 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
7 opex 5404 . . . 4 ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V
87a1i 11 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ V)
93, 5, 6, 8fvmptd 6936 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (∈𝑔‘⟨𝐼, 𝐽⟩) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
101, 9eqtrid 2778 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  cop 4582  cmpt 5172   × cxp 5614  cfv 6481  (class class class)co 7346  ωcom 7796  𝑔cgoe 35365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-goel 35372
This theorem is referenced by:  goelel3xp  35380  goeleq12bg  35381  sat1el2xp  35411  fmla0xp  35415  fmlaomn0  35422  gonan0  35424  goaln0  35425  gonar  35427  goalr  35429  fmla0disjsuc  35430  satfv0fvfmla0  35445  sategoelfvb  35451  prv1n  35463
  Copyright terms: Public domain W3C validator