Home | Metamath
Proof Explorer Theorem List (p. 350 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bj-nfs1 34901 | Shorter proof of nfs1 2492 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
It is known that ax-13 2372 is logically redundant (see ax13w 2134 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 2372 from every theorem in set.mm which is totally unbundled (i.e., has disjoint variable conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 2372 with ax13w 2134. This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 2372 (and using ax6v 1973 / ax6ev 1974 instead of ax-6 1972 / ax6e 2383, as is currently done). One reason to be optimistic is that the first few utility theorems using ax-13 2372 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice. In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 2372, labeled bj-xxxv (we follow the proof of xxx but use ax6v 1973 and ax6ev 1974 instead of ax-6 1972 and ax6e 2383, and ax-5 1914 instead of ax13v 2373; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx. It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dipense with ax-13 2372, so as to remove dependencies on ax-13 2372 from many existing theorems. UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw. It is also possible to remove dependencies on ax-11 2156, typically by replacing a nonfree hypothesis with a disjoint variable condition (see cbv3v2 2237 and following theorems). | ||
Theorem | bj-axc10v 34902* | Version of axc10 2385 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | bj-spimtv 34903* | Version of spimt 2386 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | bj-cbv3hv2 34904* | Version of cbv3h 2404 with two disjoint variable conditions, which does not require ax-11 2156 nor ax-13 2372. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | bj-cbv1hv 34905* | Version of cbv1h 2405 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | bj-cbv2hv 34906* | Version of cbv2h 2406 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbv2v 34907* | Version of cbv2 2403 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbvaldv 34908* | Version of cbvald 2407 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbvexdv 34909* | Version of cbvexd 2408 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | bj-cbval2vv 34910* | Version of cbval2vv 2413 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | bj-cbvex2vv 34911* | Version of cbvex2vv 2414 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | bj-cbvaldvav 34912* | Version of cbvaldva 2409 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbvexdvav 34913* | Version of cbvexdva 2410 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | bj-cbvex4vv 34914* | Version of cbvex4v 2415 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
Theorem | bj-equsalhv 34915* |
Version of equsalh 2420 with a disjoint variable condition, which
does not
require ax-13 2372. Remark: this is the same as equsalhw 2291. TODO:
delete after moving the following paragraph somewhere.
Remarks: equsexvw 2009 has been moved to Main; Theorem ax13lem2 2376 has a DV version which is a simple consequence of ax5e 1916; Theorems nfeqf2 2377, dveeq2 2378, nfeqf1 2379, dveeq1 2380, nfeqf 2381, axc9 2382, ax13 2375, have dv versions which are simple consequences of ax-5 1914. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | bj-axc11nv 34916* | Version of axc11n 2426 with a disjoint variable condition; instance of aevlem 2059. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | bj-aecomsv 34917* | Version of aecoms 2428 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2429 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5288). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | bj-axc11v 34918* | Version of axc11 2430 with a disjoint variable condition, which does not require ax-13 2372 nor ax-10 2139. Remark: the following theorems (hbae 2431, nfae 2433, hbnae 2432, nfnae 2434, hbnaes 2435) would need to be totally unbundled to be proved without ax-13 2372, hence would be simple consequences of ax-5 1914 or nfv 1918. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | bj-drnf2v 34919* | Version of drnf2 2444 with a disjoint variable condition, which does not require ax-10 2139, ax-11 2156, ax-12 2173, ax-13 2372. Instance of nfbidv 1926. Note that the version of axc15 2422 with a disjoint variable condition is actually ax12v2 2175 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | bj-equs45fv 34920* | Version of equs45f 2459 with a disjoint variable condition, which does not require ax-13 2372. Note that the version of equs5 2460 with a disjoint variable condition is actually sbalex 2238 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | bj-hbs1 34921* | Version of hbsb2 2486 with a disjoint variable condition, which does not require ax-13 2372, and removal of ax-13 2372 from hbs1 2269. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfs1v 34922* | Version of nfsb2 2487 with a disjoint variable condition, which does not require ax-13 2372, and removal of ax-13 2372 from nfs1v 2155. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | bj-hbsb2av 34923* | Version of hbsb2a 2488 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-hbsb3v 34924* | Version of hbsb3 2491 with a disjoint variable condition, which does not require ax-13 2372. (Remark: the unbundled version of nfs1 2492 is given by bj-nfs1v 34922.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfsab1 34925* | Remove dependency on ax-13 2372 from nfsab1 2723. UPDATE / TODO: nfsab1 2723 does not use ax-13 2372 either anymore; bj-nfsab1 34925 is shorter than nfsab1 2723 but uses ax-12 2173. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | ||
Theorem | bj-dtru 34926* |
Remove dependency on ax-13 2372 from dtru 5288. (Contributed by BJ,
31-May-2019.)
TODO: This predates the removal of ax-13 2372 in dtru 5288. But actually, sn-dtru 40116 is better than either, so move it to Main with sn-el 40115 (and determine whether bj-dtru 34926 should be kept as ALT or deleted). (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | bj-dtrucor2v 34927* | Version of dtrucor2 5290 with a disjoint variable condition, which does not require ax-13 2372 (nor ax-4 1813, ax-5 1914, ax-7 2012, ax-12 2173). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
The closed formula ∀𝑥∀𝑦𝑥 = 𝑦 approximately means that the var metavariables 𝑥 and 𝑦 represent the same variable vi. In a domain with at most one object, however, this formula is always true, hence the "approximately" in the previous sentence. | ||
Theorem | bj-hbaeb2 34928 | Biconditional version of a form of hbae 2431 with commuted quantifiers, not requiring ax-11 2156. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | ||
Theorem | bj-hbaeb 34929 | Biconditional version of hbae 2431. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | bj-hbnaeb 34930 | Biconditional version of hbnae 2432 (to replace it?). (Contributed by BJ, 6-Oct-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | bj-dvv 34931 | A special instance of bj-hbaeb2 34928. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑦 𝑥 = 𝑦) | ||
As a rule of thumb, if a theorem of the form ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) is in the database, and the "more precise" theorems ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜒 → 𝜃) and ⊢ (𝜓 → 𝜑) ⇒ ⊢ (𝜃 → 𝜒) also hold (see bj-bisym 34699), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2418 (and equsalh 2420 and equsexh 2421). Even if only one of these two theorems holds, it should be added to the database. | ||
Theorem | bj-equsal1t 34932 | Duplication of wl-equsal1t 35627, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2005 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 35628 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
Theorem | bj-equsal1ti 34933 | Inference associated with bj-equsal1t 34932. (Contributed by BJ, 30-Sep-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) | ||
Theorem | bj-equsal1 34934 | One direction of equsal 2417. (Contributed by BJ, 30-Sep-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜓) | ||
Theorem | bj-equsal2 34935 | One direction of equsal 2417. (Contributed by BJ, 30-Sep-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) | ||
Theorem | bj-equsal 34936 | Shorter proof of equsal 2417. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2417, but "min */exc equsal" is ok. (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx". | ||
Theorem | stdpc5t 34937 | Closed form of stdpc5 2204. (Possible to place it before 19.21t 2202 and use it to prove 19.21t 2202). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-stdpc5 34938 | More direct proof of stdpc5 2204. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | ||
Theorem | 2stdpc5 34939 | A double stdpc5 2204 (one direction of PM*11.3). See also 2stdpc4 2074 and 19.21vv 41883. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | bj-19.21t0 34940 | Proof of 19.21t 2202 from stdpc5t 34937. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | exlimii 34941 | Inference associated with exlimi 2213. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → 𝜓) & ⊢ ∃𝑥𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | ax11-pm 34942 | Proof of ax-11 2156 similar to PM's proof of alcom 2158 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 34946. Axiom ax-11 2156 is used in the proof only through nfa2 2172. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | ax6er 34943 | Commuted form of ax6e 2383. (Could be placed right after ax6e 2383). (Contributed by BJ, 15-Sep-2018.) |
⊢ ∃𝑥 𝑦 = 𝑥 | ||
Theorem | exlimiieq1 34944 | Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | exlimiieq2 34945 | Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 15-Sep-2018.) (Revised by BJ, 30-Sep-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | ax11-pm2 34946* | Proof of ax-11 2156 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2158 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2156 is used in the proof only through nfal 2321, nfsb 2527, sbal 2161, sb8 2521. See also ax11-pm 34942. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | bj-sbsb 34947 | Biconditional showing two possible (dual) definitions of substitution df-sb 2069 not using dummy variables. (Contributed by BJ, 19-Mar-2021.) |
⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | bj-dfsb2 34948 | Alternate (dual) definition of substitution df-sb 2069 not using dummy variables. (Contributed by BJ, 19-Mar-2021.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | bj-sbf3 34949 | Substitution has no effect on a bound variable (existential quantifier case); see sbf2 2267. (Contributed by BJ, 2-May-2019.) |
⊢ ([𝑦 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | bj-sbf4 34950 | Substitution has no effect on a bound variable (nonfreeness case); see sbf2 2267. (Contributed by BJ, 2-May-2019.) |
⊢ ([𝑦 / 𝑥]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜑) | ||
Theorem | bj-sbnf 34951* | Move nonfree predicate in and out of substitution; see sbal 2161 and sbex 2281. (Contributed by BJ, 2-May-2019.) |
⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) | ||
Theorem | bj-eu3f 34952* | Version of eu3v 2570 where the disjoint variable condition is replaced with a nonfreeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2570. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Miscellaneous theorems of first-order logic. | ||
Theorem | bj-sblem1 34953* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜒))) | ||
Theorem | bj-sblem2 34954* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) → ((∃𝑥𝜑 → 𝜒) → ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | bj-sblem 34955* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
⊢ (∀𝑥(𝜑 → (𝜓 ↔ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜒))) | ||
Theorem | bj-sbievw1 34956* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → 𝜓)) | ||
Theorem | bj-sbievw2 34957* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Theorem | bj-sbievw 34958* | Lemma for substitution. Closed form of equsalvw 2008 and sbievw 2097. (Contributed by BJ, 23-Jul-2023.) |
⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | bj-sbievv 34959 | Version of sbie 2506 with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | bj-moeub 34960 | Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022.) |
⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑)) | ||
Theorem | bj-sbidmOLD 34961 | Obsolete proof of sbidm 2514 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | bj-dvelimdv 34962* |
Deduction form of dvelim 2451 with disjoint variable conditions. Uncurried
(imported) form of bj-dvelimdv1 34963. Typically, 𝑧 is a fresh
variable used for the implicit substitution hypothesis that results in
𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as
𝜓(𝑥, 𝑧)). So the theorem says that if x is
effectively free
in 𝜓(𝑥, 𝑧), then if x and y are not the same
variable, then
𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context
𝜑.
One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1918 can be replaced with nfal 2321 followed by nfn 1861. Remark: nfald 2326 uses ax-11 2156; it might be possible to inline and use ax11w 2128 instead, but there is still a use via 19.12 2325 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | ||
Theorem | bj-dvelimdv1 34963* | Curried (exported) form of bj-dvelimdv 34962 (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)) | ||
Theorem | bj-dvelimv 34964* | A version of dvelim 2451 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜑)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | ||
Theorem | bj-nfeel2 34965* | Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝑧) | ||
Theorem | bj-axc14nf 34966 | Proof of a version of axc14 2463 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) | ||
Theorem | bj-axc14 34967 | Alternate proof of axc14 2463 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) | ||
Theorem | mobidvALT 34968* | Alternate proof of mobidv 2549 directly from its analogues albidv 1924 and exbidv 1925, using deduction style. Note the proof structure, similar to mobi 2547. (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. Remove dependency on ax-6 1972, ax-7 2012, ax-12 2173 by adapting proof of mobid 2550. (Revised by BJ, 26-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | sbn1ALT 34969 | Alternate proof of sbn1 2107, not using the false constant. (Contributed by BJ, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) | ||
In this section, we give a sketch of the proof of the Eliminability Theorem for class terms in an extensional set theory where quantification occurs only over set variables. Eliminability of class variables using the $a-statements ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 is an easy result, proved for instance in Appendix X of Azriel Levy, Basic Set Theory, Dover Publications, 2002. Note that viewed from the set.mm axiomatization, it is a metatheorem not formalizable in set.mm. It states: every formula in the language of FOL + ∈ + class terms, but without class variables, is provably equivalent (over {FOL, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }) to a formula in the language of FOL + ∈ (that is, without class terms). The proof goes by induction on the complexity of the formula (see op. cit. for details). The base case is that of atomic formulas. The atomic formulas containing class terms are of one of the six following forms: for equality, 𝑥 = {𝑦 ∣ 𝜑}, {𝑥 ∣ 𝜑} = 𝑦, {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}, and for membership, 𝑦 ∈ {𝑥 ∣ 𝜑}, {𝑥 ∣ 𝜑} ∈ 𝑦, {𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓}. These cases are dealt with by eliminable-veqab 34977, eliminable-abeqv 34978, eliminable-abeqab 34979, eliminable-velab 34976, eliminable-abelv 34980, eliminable-abelab 34981 respectively, which are all proved from {FOL, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }. (Details on the proof of the above six theorems. To understand how they were systematically proved, look at the theorems "eliminablei" below, which are special instances of df-clab 2716, dfcleq 2731 (proved from {FOL, ax-ext 2709, df-cleq 2730 }), and dfclel 2818 (proved from {FOL, df-clel 2817 }). Indeed, denote by (i) the formula proved by "eliminablei". One sees that the RHS of (1) has no class terms, the RHS's of (2x) have only class terms of the form dealt with by (1), and the RHS's of (3x) have only class terms of the forms dealt with by (1) and (2a). Note that in order to prove eliminable2a 34971, eliminable2b 34972 and eliminable3a 34974, we need to substitute a class variable for a setvar variable. This is possible because setvars are class terms: this is the content of the syntactic theorem cv 1538, which is used in these proofs (this does not appear in the html pages but it is in the set.mm file and you can check it using the Metamath program).) The induction step relies on the fact that any formula is a FOL-combination of atomic formulas, so if one found equivalents for all atomic formulas constituting the formula, then the same FOL-combination of these equivalents will be equivalent to the original formula. Note that one has a slightly more precise result: if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥 ∣ 𝜑}, then df-clab 2716 is sufficient (over FOL) to eliminate class terms, and if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥 ∣ 𝜑} and equalities, then df-clab 2716, ax-ext 2709 and df-cleq 2730 are sufficient (over FOL) to eliminate class terms. To prove that { df-clab 2716, df-cleq 2730, df-clel 2817 } provides a definitional extension of {FOL, ax-ext 2709 }, one needs to prove both the above Eliminability Theorem, which compares the expressive powers of the languages with and without class terms, and the Conservativity Theorem, which compares the deductive powers when one adds { df-clab 2716, df-cleq 2730, df-clel 2817 }. It states that a formula without class terms is provable in one axiom system if and only if it is provable in the other, and that this remains true when one adds further definitions to {FOL, ax-ext 2709 }. It is also proved in op. cit. The proof is more difficult, since one has to construct for each proof of a statement without class terms, an associated proof not using { df-clab 2716, df-cleq 2730, df-clel 2817 }. It involves a careful case study on the structure of the proof tree. | ||
Theorem | eliminable1 34970 | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | eliminable2a 34971* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = {𝑦 ∣ 𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑦 ∣ 𝜑})) | ||
Theorem | eliminable2b 34972* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | eliminable2c 34973* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓})) | ||
Theorem | eliminable3a 34974* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) | ||
Theorem | eliminable3b 34975* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓} ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ {𝑦 ∣ 𝜓})) | ||
Theorem | eliminable-velab 34976 | A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | eliminable-veqab 34977* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = {𝑦 ∣ 𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ [𝑧 / 𝑦]𝜑)) | ||
Theorem | eliminable-abeqv 34978* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | eliminable-abeqab 34979* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) | ||
Theorem | eliminable-abelv 34980* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) | ||
Theorem | eliminable-abelab 34981* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ({𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓} ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ [𝑧 / 𝑦]𝜓)) | ||
A few results about classes can be proved without using ax-ext 2709. One could move all theorems from cab 2715 to df-clel 2817 (except for dfcleq 2731 and cvjust 2732) in a subsection "Classes" before the subsection on the axiom of extensionality, together with the theorems below. In that subsection, the last statement should be df-cleq 2730. Note that without ax-ext 2709, the $a-statements df-clab 2716, df-cleq 2730, and df-clel 2817 are no longer eliminable (see previous section) (but PROBABLY df-clab 2716 is still conservative , while df-cleq 2730 and df-clel 2817 are not). This is not a reason not to study what is provable with them but without ax-ext 2709, in order to gauge their strengths more precisely. Before that subsection, a subsection "The membership predicate" could group the statements with ∈ that are currently in the FOL part (including wcel 2108, wel 2109, ax-8 2110, ax-9 2118). Remark: the weakening of eleq1 2826 / eleq2 2827 to eleq1w 2821 / eleq2w 2822 can also be done with eleq1i 2829, eqeltri 2835, eqeltrri 2836, eleq1a 2834, eleq1d 2823, eqeltrd 2839, eqeltrrd 2840, eqneltrd 2858, eqneltrrd 2859, nelneq 2863. Remark: possibility to remove dependency on ax-10 2139, ax-11 2156, ax-13 2372 from nfcri 2893 and theorems using it if one adds a disjoint variable condition (that theorem is typically used with dummy variables, so the disjoint variable condition addition is not very restrictive), and then shorten nfnfc 2918. | ||
Theorem | bj-denoteslem 34982* | Lemma for bj-denotes 34983. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
Theorem | bj-denotes 34983* |
This would be the justification theorem for the definition of the unary
predicate "E!" by ⊢ ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be
interpreted as "𝐴 exists" (as a set) or
"𝐴 denotes" (in the
sense of free logic).
A shorter proof using bitri 274 (to add an intermediate proposition ∃𝑧𝑧 = 𝐴 with a fresh 𝑧), cbvexvw 2041, and eqeq1 2742, requires the core axioms and { ax-9 2118, ax-ext 2709, df-cleq 2730 } whereas this proof requires the core axioms and { ax-8 2110, df-clab 2716, df-clel 2817 }. Theorem bj-issetwt 34986 proves that "existing" is equivalent to being a member of a class abstraction. It also requires, with the present proof, { ax-8 2110, df-clab 2716, df-clel 2817 } (whereas with the shorter proof from cbvexvw 2041 and eqeq1 2742 it would require { ax-8 2110, ax-9 2118, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }). That every class is equal to a class abstraction is proved by abid1 2880, which requires { ax-8 2110, ax-9 2118, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }. Note that there is no disjoint variable condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2372. Actually, the proof depends only on the logical axioms ax-1 6 through ax-7 2012 and sp 2178. The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of nonexistent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: these are derived from ax-ext 2709 and df-cleq 2730 (e.g., eqid 2738 and eqeq1 2742). In particular, one cannot even prove ⊢ ∃𝑥𝑥 = 𝐴 ⇒ ⊢ 𝐴 = 𝐴 without ax-ext 2709 and df-cleq 2730. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | ||
Theorem | bj-issettru 34984* | Weak version of isset 3435 without ax-ext 2709. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
Theorem | bj-elabtru 34985 | This is as close as we can get to proving extensionality for "the" "universal" class without ax-ext 2709. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
Theorem | bj-issetwt 34986* | Closed form of bj-issetw 34987. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) | ||
Theorem | bj-issetw 34987* | The closest one can get to isset 3435 without using ax-ext 2709. See also vexw 2721. Note that the only disjoint variable condition is between 𝑦 and 𝐴. From there, one can prove isset 3435 using eleq2i 2830 (which requires ax-ext 2709 and df-cleq 2730). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴) | ||
Theorem | bj-elissetALT 34988* | Alternate proof of elisset 2820. This is essentially the same proof as seen by inlining bj-denotes 34983 and bj-denoteslem 34982. Use elissetv 2819 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | ||
Theorem | bj-issetiv 34989* | Version of bj-isseti 34990 with a disjoint variable condition on 𝑥, 𝑉. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general than isseti 3437 as long as elex 3440 is not available (and the non-dependence of bj-issetiv 34989 on special properties of the universal class V is obvious). Prefer its use over bj-isseti 34990 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
Theorem | bj-isseti 34990* | Version of isseti 3437 with a class variable 𝑉 in the hypothesis instead of V for extra generality. This is indeed more general than isseti 3437 as long as elex 3440 is not available (and the non-dependence of bj-isseti 34990 on special properties of the universal class V is obvious). Use bj-issetiv 34989 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
Theorem | bj-ralvw 34991 | A weak version of ralv 3446 not using ax-ext 2709 (nor df-cleq 2730, df-clel 2817, df-v 3424), and only core FOL axioms. See also bj-rexvw 34992. The analogues for reuv 3448 and rmov 3449 are not proved. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ 𝜓 ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | bj-rexvw 34992 | A weak version of rexv 3447 not using ax-ext 2709 (nor df-cleq 2730, df-clel 2817, df-v 3424), and only core FOL axioms. See also bj-ralvw 34991. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ 𝜓 ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | bj-rababw 34993 | A weak version of rabab 3450 not using df-clel 2817 nor df-v 3424 (but requiring ax-ext 2709) nor ax-12 2173. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ 𝜓 ⇒ ⊢ {𝑥 ∈ {𝑦 ∣ 𝜓} ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
Theorem | bj-rexcom4bv 34994* | Version of rexcom4b 3451 and bj-rexcom4b 34995 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2069 and df-clab 2716 (so that it depends on df-clel 2817 and df-rex 3069 only on top of first-order logic). Prefer its use over bj-rexcom4b 34995 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
⊢ 𝐵 ∈ 𝑉 ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
Theorem | bj-rexcom4b 34995* | Remove from rexcom4b 3451 dependency on ax-ext 2709 and ax-13 2372 (and on df-or 844, df-cleq 2730, df-nfc 2888, df-v 3424). The hypothesis uses 𝑉 instead of V (see bj-isseti 34990 for the motivation). Use bj-rexcom4bv 34994 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ 𝐵 ∈ 𝑉 ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
Theorem | bj-ceqsalt0 34996 | The FOL content of ceqsalt 3452. Lemma for bj-ceqsalt 34998 and bj-ceqsaltv 34999. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃 → 𝜑) ↔ 𝜓)) | ||
Theorem | bj-ceqsalt1 34997 | The FOL content of ceqsalt 3452. Lemma for bj-ceqsalt 34998 and bj-ceqsaltv 34999. TODO: consider removing if it does not add anything to bj-ceqsalt0 34996. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.) |
⊢ (𝜃 → ∃𝑥𝜒) ⇒ ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) | ||
Theorem | bj-ceqsalt 34998* | Remove from ceqsalt 3452 dependency on ax-ext 2709 (and on df-cleq 2730 and df-v 3424). Note: this is not doable with ceqsralt 3453 (or ceqsralv 3459), which uses eleq1 2826, but the same dependence removal is possible for ceqsalg 3454, ceqsal 3456, ceqsalv 3457, cgsexg 3464, cgsex2g 3465, cgsex4g 3466, ceqsex 3468, ceqsexv 3469, ceqsex2 3472, ceqsex2v 3473, ceqsex3v 3474, ceqsex4v 3475, ceqsex6v 3476, ceqsex8v 3477, gencbvex 3478 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3479, gencbval 3480, vtoclgft 3482 (it uses Ⅎ, whose justification nfcjust 2887 does not use ax-ext 2709) and several other vtocl* theorems (see for instance bj-vtoclg1f 35030). See also bj-ceqsaltv 34999. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | bj-ceqsaltv 34999* | Version of bj-ceqsalt 34998 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2069 and df-clab 2716. Prefer its use over bj-ceqsalt 34998 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
Theorem | bj-ceqsalg0 35000 | The FOL content of ceqsalg 3454. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜒 → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |