HomeHome Metamath Proof Explorer
Theorem List (p. 350 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 34901-35000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-hbext 34901 Closed form of hbex 2320. (Contributed by BJ, 10-Oct-2019.)
(∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theorembj-nfalt 34902 Closed form of nfal 2318. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 
Theorembj-nfext 34903 Closed form of nfex 2319. (Contributed by BJ, 10-Oct-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 
Theorembj-eeanvw 34904* Version of exdistrv 1960 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2155. (The same can be done with eeeanv 2349 and ee4anv 2350.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theorembj-modal4 34905 First-order logic form of the modal axiom (4). See hba1 2291. This is the standard proof of the implication in modal logic (B5 4). Its dual statement is bj-modal4e 34906. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theorembj-modal4e 34906 First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 34905 (hba1 2291). (Contributed by BJ, 21-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥𝑥𝜑 → ∃𝑥𝜑)
 
Theorembj-modalb 34907 A short form of the axiom B of modal logic using only primitive symbols (→ , ¬ , ∀). (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.)
𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theorembj-wnf1 34908 When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-wnf2 34909 When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.)
(∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-wnfanf 34910 When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the universal form of nonfreeness. (Contributed by BJ, 9-Dec-2023.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓))
 
Theorembj-wnfenf 34911 When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the existential form of nonfreeness. (Contributed by BJ, 9-Dec-2023.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑𝜓))
 
Theorembj-substax12 34912 Equivalent form of the axiom of substitution bj-ax12 34847. Although both sides need a DV condition on 𝑥, 𝑡 (or as in bj-ax12v3 34876 on 𝑡, 𝜑) to hold, their equivalence holds without DV conditions. The forward implication is proved in modal (K4) while the reverse implication is proved in modal (T5). The LHS has the advantage of not involving nested quantifiers on the same variable. Its metaweakening is proved from the core axiom schemes in bj-substw 34913. Note that in the LHS, the reverse implication holds by equs4 2417 (or equs4v 2004 if a DV condition is added on 𝑥, 𝑡 as in bj-ax12 34847).

The LHS can be read as saying that if there exists a setvar equal to a given term witnessing 𝜑, then all setvars equal to that term also witness 𝜑. An equivalent suggestive form for the LHS is ¬ (∃𝑥(𝑥 = 𝑡𝜑) ∧ ∃𝑥(𝑥 = 𝑡 ∧ ¬ 𝜑)), which expresses that there can be no two variables both equal to a given term, one witnessing 𝜑 and the other witnessing ¬ 𝜑. (Contributed by BJ, 21-May-2024.) (Proof modification is discouraged.)

((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
 
Theorembj-substw 34913* Weak form of the LHS of bj-substax12 34912 proved from the core axiom schemes. Compare ax12w 2130. (Contributed by BJ, 26-May-2024.) (Proof modification is discouraged.)
(𝑥 = 𝑡 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
 
20.15.4.10  Nonfreeness
 
Syntaxwnnf 34914 Syntax for the nonfreeness quantifier.
wff Ⅎ'𝑥𝜑
 
Definitiondf-bj-nnf 34915 Definition of the nonfreeness quantifier. The formula Ⅎ'𝑥𝜑 has the intended meaning that the variable 𝑥 is semantically nonfree in the formula 𝜑. The motivation for this quantifier is to have a condition expressible in the logic which is as close as possible to the non-occurrence condition DV (𝑥, 𝜑) (in Metamath files, "$d x ph $."), which belongs to the metalogic.

The standard syntactic nonfreeness condition, also expressed in the metalogic, is intermediate between these two notions: semantic nonfreeness implies syntactic nonfreeness, which implies non-occurrence. Both implications are strict; for the first, note that Ⅎ'𝑥𝑥 = 𝑥, that is, 𝑥 is semantically (but not syntactically) nonfree in the formula 𝑥 = 𝑥; for the second, note that 𝑥 is syntactically nonfree in the formula 𝑥𝑥 = 𝑥 although it occurs in it.

We now prove two metatheorems which make precise the above fact that, as far as proving power is concerned, the nonfreeness condition Ⅎ'𝑥𝜑 is very close to the non-occurrence condition DV (𝑥, 𝜑).

Let S be a Metamath system with the FOL-syntax of (i)set.mm, containing intuitionistic positive propositional calculus and ax-5 1914 and ax5e 1916.

Theorem 1. If the scheme

(Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn PHI0, DV)

is provable in S, then so is the scheme

(PHI1 & ... & PHIn PHI0, DV ∪ {{𝑥, 𝜑}}).

Proof: By bj-nnfv 34945, we can prove (Ⅎ'𝑥𝜑, {{𝑥, 𝜑}}), from which the theorem follows. QED

Theorem 2. Suppose that S also contains (the FOL version of) modal logic KB and commutation of quantifiers alcom 2157 and excom 2163 (possibly weakened by a DV condition on the quantifying variables), and that S can be axiomatized such that the only axioms with a DV condition involving a formula variable are among ax-5 1914, ax5e 1916, ax5ea 1917. If the scheme

(PHI1 & ... & PHIn PHI0, DV)

is provable in S, then so is the scheme

(Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn PHI0, DV ∖ {{𝑥, 𝜑}}).

More precisely, if S contains modal 45 and if the variables quantified over in PHI0, ..., PHIn are among 𝑥1, ..., 𝑥m, then the scheme

(PHI1 & ... & PHIn (antecedent PHI0), DV ∖ {{𝑥, 𝜑}})

is provable in S, where the antecedent is a finite conjunction of formulas of the form 𝑥i1 ...∀𝑥ip Ⅎ'𝑥𝜑 where the 𝑥ij's are among the 𝑥i's.

Lemma: If 𝑥 OC(PHI), then S proves the scheme

(Ⅎ'𝑥𝜑 ⇒ Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 OC(PHI) ∖ {𝜑}}).

More precisely, if the variables quantified over in PHI are among 𝑥1, ..., 𝑥m, then

((antecedent → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 OC(PHI) ∖ {𝜑}})

is provable in S, with the same form of antecedent as above.

Proof: By induction on the height of PHI. We first note that by bj-nnfbi 34916 we can assume that PHI contains only primitive (as opposed to defined) symbols. For the base case, atomic formulas are either 𝜑, in which case the scheme to prove is an instance of id 22, or have variables all in OC(PHI) ∖ {𝜑}, so (Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 OC(PHI) ∖ {𝜑}}) by bj-nnfv 34945, hence ((Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 OC(PHI) ∖ {𝜑}}) by a1i 11. For the induction step, PHI is either an implication, a negation, a conjunction, a disjunction, a biconditional, a universal or an existential quantification of formulas where 𝑥 does not occur. We use respectively bj-nnfim 34937, bj-nnfnt 34931, bj-nnfan 34939, bj-nnfor 34941, bj-nnfbit 34943, bj-nnfalt 34957, bj-nnfext 34958. For instance, in the implication case, if we have by induction hypothesis

((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 OC(PHI) ∖ {𝜑}}) and ((∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 OC(PSI) ∖ {𝜑}}),

then bj-nnfim 34937 yields

(((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 ∧ ∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑) → Ⅎ'𝑥 (PHI PSI)), {{𝑥, 𝑎} ∣ 𝑎 OC(PHI PSI) ∖ {𝜑}})

and similarly for antecedents which are conjunctions as in the statement of the lemma.

In the universal quantification case, say quantification over 𝑦, if we have by induction hypothesis

((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 OC(PHI) ∖ {𝜑}}),

then bj-nnfalt 34957 yields

((∀𝑦𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥𝑦 PHI), {{𝑥, 𝑎} ∣ 𝑎 OC(𝑦 PHI) ∖ {𝜑}})

and similarly for antecedents which are conjunctions as in the statement of the lemma.

Note bj-nnfalt 34957 and bj-nnfext 34958 are proved from positive propositional calculus with alcom 2157 and excom 2163 (possibly weakened by a DV condition on the quantifying variables), and modalB (via bj-19.12 34952). QED

Proof of the theorem: Consider a proof of that scheme directly from the axioms. Consider a step where a DV condition involving 𝜑 is used. By hypothesis, that step is an instance of ax-5 1914 or ax5e 1916 or ax5ea 1917. It has the form (PSI → ∀𝑥 PSI) where PSI has the form of the lemma and the DV conditions of the proof contain {{𝑥, 𝑎} ∣ 𝑎 OC(PSI) }. Therefore, one has

((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 OC(PSI) ∖ {𝜑}})

for appropriate 𝑥i's, and by bj-nnfa 34919 we obtain

((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 (PSI → ∀𝑥 PSI)), {{𝑥, 𝑎} ∣ 𝑎 OC(PSI) ∖ {𝜑}})

and similarly for antecedents which are conjunctions as in the statement of the theorem. Similarly if the step is using ax5e 1916 or ax5ea 1917, we would use bj-nnfe 34922 or bj-nnfea 34925 respectively.

Therefore, taking as antecedent of the theorem to prove the conjunction of all the antecedents at each of these steps, we obtain a proof by "carrying the context over", which is possible, as in the deduction theorem when the step uses ax-mp 5, and when the step uses ax-gen 1798, by bj-nnf-alrim 34946 and bj-nnfa1 34950 (which requires modal 45). The condition DV (𝑥, 𝜑) is not required by the resulting proof.

Finally, there may be in the global antecedent thus constructed some dummy variables, which can be removed by spvw 1985. QED

Compared with df-nf 1787, the present definition is stricter on positive propositional calculus (bj-nnfnfTEMP 34929) and equivalent on core FOL plus sp 2177 (bj-nfnnfTEMP 34949). While being stricter, it still holds for non-occurring variables (bj-nnfv 34945), which is the basic requirement for this quantifier. In particular, it translates more closely the associated variable disjointness condition. Since the nonfreeness quantifier is a means to translate a variable disjointness condition from the metalogic to the logic, it seems preferable. Also, since nonfreeness is mainly used as a hypothesis, this definition would allow more theorems, notably the 19.xx theorems, to be proved from the core axioms, without needing a 19.xxv variant.

One can devise infinitely many definitions increasingly close to the non-occurring condition, like ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ 𝑥((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥𝑥... and each stronger definition would permit more theorems to be proved from the core axioms. A reasonable rule seems to be to stop before nested quantifiers appear (since they typically require ax-10 2138 to work with), and also not to have redundant conjuncts when full metacomplete FOL= is developed.

(Contributed by BJ, 28-Jul-2023.)

(Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
 
Theorembj-nnfbi 34916 If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other. Compare nfbiit 1854. From this and bj-nnfim 34937 and bj-nnfnt 34931, one can prove analogous nonfreeness conservation results for other propositional operators. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 34932) in order not to require sp 2177 (modal T). (Contributed by BJ, 27-Aug-2023.)
(((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓))
 
Theorembj-nnfbd 34917* If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi 34916. (Contributed by BJ, 27-Aug-2023.)
(𝜑 → (𝜓𝜒))       (𝜑 → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒))
 
Theorembj-nnfbii 34918 If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, inference form. See bj-nnfbi 34916. (Contributed by BJ, 18-Nov-2023.)
(𝜑𝜓)       (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)
 
Theorembj-nnfa 34919 Nonfreeness implies the equivalent of ax-5 1914. See nf5r 2188. (Contributed by BJ, 28-Jul-2023.)
(Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
 
Theorembj-nnfad 34920 Nonfreeness implies the equivalent of ax-5 1914, deduction form. See nf5rd 2190. (Contributed by BJ, 2-Dec-2023.)
(𝜑 → Ⅎ'𝑥𝜓)       (𝜑 → (𝜓 → ∀𝑥𝜓))
 
Theorembj-nnfai 34921 Nonfreeness implies the equivalent of ax-5 1914, inference form. See nf5ri 2189. (Contributed by BJ, 22-Sep-2024.)
Ⅎ'𝑥𝜑       (𝜑 → ∀𝑥𝜑)
 
Theorembj-nnfe 34922 Nonfreeness implies the equivalent of ax5e 1916. (Contributed by BJ, 28-Jul-2023.)
(Ⅎ'𝑥𝜑 → (∃𝑥𝜑𝜑))
 
Theorembj-nnfed 34923 Nonfreeness implies the equivalent of ax5e 1916, deduction form. (Contributed by BJ, 2-Dec-2023.)
(𝜑 → Ⅎ'𝑥𝜓)       (𝜑 → (∃𝑥𝜓𝜓))
 
Theorembj-nnfei 34924 Nonfreeness implies the equivalent of ax5e 1916, inference form. (Contributed by BJ, 22-Sep-2024.)
Ⅎ'𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theorembj-nnfea 34925 Nonfreeness implies the equivalent of ax5ea 1917. (Contributed by BJ, 28-Jul-2023.)
(Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
 
Theorembj-nnfead 34926 Nonfreeness implies the equivalent of ax5ea 1917, deduction form. (Contributed by BJ, 2-Dec-2023.)
(𝜑 → Ⅎ'𝑥𝜓)       (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
 
Theorembj-nnfeai 34927 Nonfreeness implies the equivalent of ax5ea 1917, inference form. (Contributed by BJ, 22-Sep-2024.)
Ⅎ'𝑥𝜑       (∃𝑥𝜑 → ∀𝑥𝜑)
 
Theorembj-dfnnf2 34928 Alternate definition of df-bj-nnf 34915 using only primitive symbols (, ¬, ) in each conjunct. (Contributed by BJ, 20-Aug-2023.)
(Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
 
Theorembj-nnfnfTEMP 34929 New nonfreeness implies old nonfreeness on minimal implicational calculus (the proof indicates it uses ax-3 8 because of set.mm's definition of the biconditional, but the proof actually holds in minimal implicational calculus). (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1787 except via df-nf 1787 directly. (Proof modification is discouraged.)
(Ⅎ'𝑥𝜑 → Ⅎ𝑥𝜑)
 
Theorembj-wnfnf 34930 When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 34937, bj-nnfe1 34951 and bj-nnfa1 34950. (Contributed by BJ, 9-Dec-2023.)
Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓)
 
Theorembj-nnfnt 34931 A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 34937). Intuitionistically, (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1860. (Contributed by BJ, 28-Jul-2023.)
(Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)
 
Theorembj-nnftht 34932 A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp 2177 (modal T), as in bj-nnfbi 34916. (Contributed by BJ, 28-Jul-2023.)
((𝜑 ∧ ∀𝑥𝜑) → Ⅎ'𝑥𝜑)
 
Theorembj-nnfth 34933 A variable is nonfree in a theorem, inference form. (Contributed by BJ, 28-Jul-2023.)
𝜑       Ⅎ'𝑥𝜑
 
Theorembj-nnfnth 34934 A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.)
¬ 𝜑       Ⅎ'𝑥𝜑
 
Theorembj-nnfim1 34935 A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
 
Theorembj-nnfim2 34936 A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑𝜓)))
 
Theorembj-nnfim 34937 Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnfimd 34938 Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfan 34939 Nonfreeness in both conjuncts implies nonfreeness in the conjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of conjunction in terms of implication and negation, so using bj-nnfim 34937, bj-nnfnt 34931 and bj-nnfbi 34916, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnfand 34940 Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 34939, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 34939 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 34940 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfor 34941 Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim 34937, bj-nnfnt 34931 and bj-nnfbi 34916, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnford 34942 Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor 34941 and bj-nnfand 34940. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfbit 34943 Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
 
Theorembj-nnfbid 34944 Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
(𝜑 → Ⅎ'𝑥𝜓)    &   (𝜑 → Ⅎ'𝑥𝜒)       (𝜑 → Ⅎ'𝑥(𝜓𝜒))
 
Theorembj-nnfv 34945* A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023.)
Ⅎ'𝑥𝜑
 
Theorembj-nnf-alrim 34946 Proof of the closed form of alrimi 2207 from modalK (compare alrimiv 1931). See also bj-alrim 34884. Actually, most proofs between 19.3t 2195 and 2sbbid 2240 could be proved without ax-12 2172. (Contributed by BJ, 20-Aug-2023.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-nnf-exlim 34947 Proof of the closed form of exlimi 2211 from modalK (compare exlimiv 1934). See also bj-sylget2 34812. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓)))
 
Theorembj-dfnnf3 34948 Alternate definition of nonfreeness when sp 2177 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1787. (Proof modification is discouraged.)
(Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
 
Theorembj-nfnnfTEMP 34949 New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2177. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1787 except via df-nf 1787 directly. (Proof modification is discouraged.)
(Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑)
 
Theorembj-nnfa1 34950 See nfa1 2149. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Ⅎ'𝑥𝑥𝜑
 
Theorembj-nnfe1 34951 See nfe1 2148. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Ⅎ'𝑥𝑥𝜑
 
Theorembj-19.12 34952 See 19.12 2322. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2163 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1787 or df-bj-nnf 34915, directly or indirectly. (Proof modification is discouraged.)
(∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theorembj-nnflemaa 34953 One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 34872. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
 
Theorembj-nnflemee 34954 One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(∃𝑦𝜑𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝜑))
 
Theorembj-nnflemae 34955 One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦𝑥𝜑))
 
Theorembj-nnflemea 34956 One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥(∃𝑦𝜑𝜑) → (∃𝑦𝑥𝜑 → ∀𝑥𝜑))
 
Theorembj-nnfalt 34957 See nfal 2318 and bj-nfalt 34902. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦𝑥𝜑)
 
Theorembj-nnfext 34958 See nfex 2319 and bj-nfext 34903. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
(∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦𝑥𝜑)
 
Theorembj-stdpc5t 34959 Alias of bj-nnf-alrim 34946 for labeling consistency (a standard predicate calculus axiom). Closed form of stdpc5 2202 proved from modalK (obsoleting stdpc5v 1942). (Contributed by BJ, 2-Dec-2023.) Use bj-nnf-alrim 34946 instead. (New usaged is discouraged.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-19.21t 34960 Statement 19.21t 2200 proved from modalK (obsoleting 19.21v 1943). (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theorembj-19.23t 34961 Statement 19.23t 2204 proved from modalK (obsoleting 19.23v 1946). (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorembj-19.36im 34962 One direction of 19.36 2224 from the same axioms as 19.36imv 1949. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓)))
 
Theorembj-19.37im 34963 One direction of 19.37 2226 from the same axioms as 19.37imv 1952. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓)))
 
Theorembj-19.42t 34964 Closed form of 19.42 2230 from the same axioms as 19.42v 1958. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)))
 
Theorembj-19.41t 34965 Closed form of 19.41 2229 from the same axioms as 19.41v 1954. The same is doable with 19.27 2221, 19.28 2222, 19.31 2228, 19.32 2227, 19.44 2231, 19.45 2232. (Contributed by BJ, 2-Dec-2023.)
(Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorembj-sbft 34966 Version of sbft 2263 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.)
(Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑𝜑))
 
Theorembj-pm11.53vw 34967 Version of pm11.53v 1948 with nonfreeness antecedents. One can also prove the theorem with antecedent (Ⅎ'𝑦𝑥𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓). (Contributed by BJ, 7-Oct-2024.)
((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥𝑦𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-pm11.53v 34968 Version of pm11.53v 1948 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.)
((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-pm11.53a 34969* A variant of pm11.53v 1948. One can similarly prove a variant with DV (𝑦, 𝜑) and 𝑦Ⅎ'𝑥𝜓 instead of DV (𝑥, 𝜓) and 𝑥Ⅎ'𝑦𝜑. (Contributed by BJ, 7-Oct-2024.)
(∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-equsvt 34970* A variant of equsv 2007. (Contributed by BJ, 7-Oct-2024.)
(Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
 
Theorembj-equsalvwd 34971* Variant of equsalvw 2008. (Contributed by BJ, 7-Oct-2024.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → Ⅎ'𝑥𝜒)    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
 
Theorembj-equsexvwd 34972* Variant of equsexvw 2009. (Contributed by BJ, 7-Oct-2024.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → Ⅎ'𝑥𝜒)    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
 
Theorembj-sbievwd 34973* Variant of sbievw 2096. (Contributed by BJ, 7-Oct-2024.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → Ⅎ'𝑥𝜒)    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
20.15.4.11  Adding ax-13
 
Theorembj-axc10 34974 Alternate proof of axc10 2386. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2373, by using ax6ev 1974 instead of ax6e 2384. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-alequex 34975 A fol lemma. See alequexv 2005 for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt 2387 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
 
Theorembj-spimt2 34976 A step in the proof of spimt 2387. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))
 
Theorembj-cbv3ta 34977 Closed form of cbv3 2398. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-cbv3tb 34978 Closed form of cbv3 2398. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦𝑥𝜓 ∧ ∀𝑥𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-hbsb3t 34979 A theorem close to a closed form of hbsb3 2492. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
 
Theorembj-hbsb3 34980 Shorter proof of hbsb3 2492. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1t 34981 A theorem close to a closed form of nfs1 2493. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1t2 34982 A theorem close to a closed form of nfs1 2493. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1 34983 Shorter proof of nfs1 2493 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
𝑦𝜑       𝑥[𝑦 / 𝑥]𝜑
 
20.15.4.12  Removing dependencies on ax-13 (and ax-11)

It is known that ax-13 2373 is logically redundant (see ax13w 2133 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 2373 from every theorem in set.mm which is totally unbundled (i.e., has disjoint variable conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 2373 with ax13w 2133.

This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 2373 (and using ax6v 1973 / ax6ev 1974 instead of ax-6 1972 / ax6e 2384, as is currently done).

One reason to be optimistic is that the first few utility theorems using ax-13 2373 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice.

In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 2373, labeled bj-xxxv (we follow the proof of xxx but use ax6v 1973 and ax6ev 1974 instead of ax-6 1972 and ax6e 2384, and ax-5 1914 instead of ax13v 2374; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx.

It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dipense with ax-13 2373, so as to remove dependencies on ax-13 2373 from many existing theorems.

UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw.

It is also possible to remove dependencies on ax-11 2155, typically by replacing a nonfree hypothesis with a disjoint variable condition (see cbv3v2 2235 and following theorems).

 
Theorembj-axc10v 34984* Version of axc10 2386 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-spimtv 34985* Version of spimt 2387 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theorembj-cbv3hv2 34986* Version of cbv3h 2405 with two disjoint variable conditions, which does not require ax-11 2155 nor ax-13 2373. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theorembj-cbv1hv 34987* Version of cbv1h 2406 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theorembj-cbv2hv 34988* Version of cbv2h 2407 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbv2v 34989* Version of cbv2 2404 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvaldv 34990* Version of cbvald 2408 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvexdv 34991* Version of cbvexd 2409 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theorembj-cbval2vv 34992* Version of cbval2vv 2414 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theorembj-cbvex2vv 34993* Version of cbvex2vv 2415 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theorembj-cbvaldvav 34994* Version of cbvaldva 2410 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvexdvav 34995* Version of cbvexdva 2411 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theorembj-cbvex4vv 34996* Version of cbvex4v 2416 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theorembj-equsalhv 34997* Version of equsalh 2421 with a disjoint variable condition, which does not require ax-13 2373. Remark: this is the same as equsalhw 2289. TODO: delete after moving the following paragraph somewhere.

Remarks: equsexvw 2009 has been moved to Main; Theorem ax13lem2 2377 has a DV version which is a simple consequence of ax5e 1916; Theorems nfeqf2 2378, dveeq2 2379, nfeqf1 2380, dveeq1 2381, nfeqf 2382, axc9 2383, ax13 2376, have dv versions which are simple consequences of ax-5 1914. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theorembj-axc11nv 34998* Version of axc11n 2427 with a disjoint variable condition; instance of aevlem 2059. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-aecomsv 34999* Version of aecoms 2429 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2430 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5360). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦𝜑)       (∀𝑦 𝑦 = 𝑥𝜑)
 
Theorembj-axc11v 35000* Version of axc11 2431 with a disjoint variable condition, which does not require ax-13 2373 nor ax-10 2138. Remark: the following theorems (hbae 2432, nfae 2434, hbnae 2433, nfnae 2435, hbnaes 2436) would need to be totally unbundled to be proved without ax-13 2373, hence would be simple consequences of ax-5 1914 or nfv 1918. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >