HomeHome Metamath Proof Explorer
Theorem List (p. 350 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 34901-35000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-nfs1 34901 Shorter proof of nfs1 2492 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
𝑦𝜑       𝑥[𝑦 / 𝑥]𝜑
 
20.15.4.12  Removing dependencies on ax-13 (and ax-11)

It is known that ax-13 2372 is logically redundant (see ax13w 2134 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 2372 from every theorem in set.mm which is totally unbundled (i.e., has disjoint variable conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 2372 with ax13w 2134.

This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 2372 (and using ax6v 1973 / ax6ev 1974 instead of ax-6 1972 / ax6e 2383, as is currently done).

One reason to be optimistic is that the first few utility theorems using ax-13 2372 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice.

In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 2372, labeled bj-xxxv (we follow the proof of xxx but use ax6v 1973 and ax6ev 1974 instead of ax-6 1972 and ax6e 2383, and ax-5 1914 instead of ax13v 2373; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx.

It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dipense with ax-13 2372, so as to remove dependencies on ax-13 2372 from many existing theorems.

UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw.

It is also possible to remove dependencies on ax-11 2156, typically by replacing a nonfree hypothesis with a disjoint variable condition (see cbv3v2 2237 and following theorems).

 
Theorembj-axc10v 34902* Version of axc10 2385 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-spimtv 34903* Version of spimt 2386 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theorembj-cbv3hv2 34904* Version of cbv3h 2404 with two disjoint variable conditions, which does not require ax-11 2156 nor ax-13 2372. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theorembj-cbv1hv 34905* Version of cbv1h 2405 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theorembj-cbv2hv 34906* Version of cbv2h 2406 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbv2v 34907* Version of cbv2 2403 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvaldv 34908* Version of cbvald 2407 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvexdv 34909* Version of cbvexd 2408 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theorembj-cbval2vv 34910* Version of cbval2vv 2413 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theorembj-cbvex2vv 34911* Version of cbvex2vv 2414 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theorembj-cbvaldvav 34912* Version of cbvaldva 2409 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theorembj-cbvexdvav 34913* Version of cbvexdva 2410 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theorembj-cbvex4vv 34914* Version of cbvex4v 2415 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theorembj-equsalhv 34915* Version of equsalh 2420 with a disjoint variable condition, which does not require ax-13 2372. Remark: this is the same as equsalhw 2291. TODO: delete after moving the following paragraph somewhere.

Remarks: equsexvw 2009 has been moved to Main; Theorem ax13lem2 2376 has a DV version which is a simple consequence of ax5e 1916; Theorems nfeqf2 2377, dveeq2 2378, nfeqf1 2379, dveeq1 2380, nfeqf 2381, axc9 2382, ax13 2375, have dv versions which are simple consequences of ax-5 1914. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theorembj-axc11nv 34916* Version of axc11n 2426 with a disjoint variable condition; instance of aevlem 2059. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-aecomsv 34917* Version of aecoms 2428 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2429 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5288). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦𝜑)       (∀𝑦 𝑦 = 𝑥𝜑)
 
Theorembj-axc11v 34918* Version of axc11 2430 with a disjoint variable condition, which does not require ax-13 2372 nor ax-10 2139. Remark: the following theorems (hbae 2431, nfae 2433, hbnae 2432, nfnae 2434, hbnaes 2435) would need to be totally unbundled to be proved without ax-13 2372, hence would be simple consequences of ax-5 1914 or nfv 1918. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theorembj-drnf2v 34919* Version of drnf2 2444 with a disjoint variable condition, which does not require ax-10 2139, ax-11 2156, ax-12 2173, ax-13 2372. Instance of nfbidv 1926. Note that the version of axc15 2422 with a disjoint variable condition is actually ax12v2 2175 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
 
Theorembj-equs45fv 34920* Version of equs45f 2459 with a disjoint variable condition, which does not require ax-13 2372. Note that the version of equs5 2460 with a disjoint variable condition is actually sbalex 2238 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
𝑦𝜑       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theorembj-hbs1 34921* Version of hbsb2 2486 with a disjoint variable condition, which does not require ax-13 2372, and removal of ax-13 2372 from hbs1 2269. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfs1v 34922* Version of nfsb2 2487 with a disjoint variable condition, which does not require ax-13 2372, and removal of ax-13 2372 from nfs1v 2155. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
𝑥[𝑦 / 𝑥]𝜑
 
Theorembj-hbsb2av 34923* Version of hbsb2a 2488 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-hbsb3v 34924* Version of hbsb3 2491 with a disjoint variable condition, which does not require ax-13 2372. (Remark: the unbundled version of nfs1 2492 is given by bj-nfs1v 34922.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theorembj-nfsab1 34925* Remove dependency on ax-13 2372 from nfsab1 2723. UPDATE / TODO: nfsab1 2723 does not use ax-13 2372 either anymore; bj-nfsab1 34925 is shorter than nfsab1 2723 but uses ax-12 2173. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
𝑥 𝑦 ∈ {𝑥𝜑}
 
Theorembj-dtru 34926* Remove dependency on ax-13 2372 from dtru 5288. (Contributed by BJ, 31-May-2019.)

TODO: This predates the removal of ax-13 2372 in dtru 5288. But actually, sn-dtru 40116 is better than either, so move it to Main with sn-el 40115 (and determine whether bj-dtru 34926 should be kept as ALT or deleted).

(Proof modification is discouraged.) (New usage is discouraged.)

¬ ∀𝑥 𝑥 = 𝑦
 
Theorembj-dtrucor2v 34927* Version of dtrucor2 5290 with a disjoint variable condition, which does not require ax-13 2372 (nor ax-4 1813, ax-5 1914, ax-7 2012, ax-12 2173). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
(𝑥 = 𝑦𝑥𝑦)       (𝜑 ∧ ¬ 𝜑)
 
20.15.4.13  Distinct var metavariables

The closed formula 𝑥𝑦𝑥 = 𝑦 approximately means that the var metavariables 𝑥 and 𝑦 represent the same variable vi. In a domain with at most one object, however, this formula is always true, hence the "approximately" in the previous sentence.

 
Theorembj-hbaeb2 34928 Biconditional version of a form of hbae 2431 with commuted quantifiers, not requiring ax-11 2156. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)
 
Theorembj-hbaeb 34929 Biconditional version of hbae 2431. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧𝑥 𝑥 = 𝑦)
 
Theorembj-hbnaeb 34930 Biconditional version of hbnae 2432 (to replace it?). (Contributed by BJ, 6-Oct-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
 
Theorembj-dvv 34931 A special instance of bj-hbaeb2 34928. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑦 𝑥 = 𝑦)
 
20.15.4.14  Around ~ equsal

As a rule of thumb, if a theorem of the form (𝜑𝜓) ⇒ (𝜒𝜃) is in the database, and the "more precise" theorems (𝜑𝜓) ⇒ (𝜒𝜃) and (𝜓𝜑) ⇒ (𝜃𝜒) also hold (see bj-bisym 34699), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2418 (and equsalh 2420 and equsexh 2421). Even if only one of these two theorems holds, it should be added to the database.

 
Theorembj-equsal1t 34932 Duplication of wl-equsal1t 35627, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2005 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 35628 is also interesting. (Contributed by BJ, 6-Oct-2018.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
 
Theorembj-equsal1ti 34933 Inference associated with bj-equsal1t 34932. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
 
Theorembj-equsal1 34934 One direction of equsal 2417. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)
 
Theorembj-equsal2 34935 One direction of equsal 2417. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓))
 
Theorembj-equsal 34936 Shorter proof of equsal 2417. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2417, but "min */exc equsal" is ok. (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
20.15.4.15  Some Principia Mathematica proofs

References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx".

 
Theoremstdpc5t 34937 Closed form of stdpc5 2204. (Possible to place it before 19.21t 2202 and use it to prove 19.21t 2202). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-stdpc5 34938 More direct proof of stdpc5 2204. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theorem2stdpc5 34939 A double stdpc5 2204 (one direction of PM*11.3). See also 2stdpc4 2074 and 19.21vv 41883. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) → (𝜑 → ∀𝑥𝑦𝜓))
 
Theorembj-19.21t0 34940 Proof of 19.21t 2202 from stdpc5t 34937. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theoremexlimii 34941 Inference associated with exlimi 2213. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.)
𝑥𝜓    &   (𝜑𝜓)    &   𝑥𝜑       𝜓
 
Theoremax11-pm 34942 Proof of ax-11 2156 similar to PM's proof of alcom 2158 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 34946. Axiom ax-11 2156 is used in the proof only through nfa2 2172. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremax6er 34943 Commuted form of ax6e 2383. (Could be placed right after ax6e 2383). (Contributed by BJ, 15-Sep-2018.)
𝑥 𝑦 = 𝑥
 
Theoremexlimiieq1 34944 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremexlimiieq2 34945 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 15-Sep-2018.) (Revised by BJ, 30-Sep-2018.)
𝑦𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremax11-pm2 34946* Proof of ax-11 2156 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2158 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2156 is used in the proof only through nfal 2321, nfsb 2527, sbal 2161, sb8 2521. See also ax11-pm 34942. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
20.15.4.16  Alternate definition of substitution
 
Theorembj-sbsb 34947 Biconditional showing two possible (dual) definitions of substitution df-sb 2069 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
(((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
Theorembj-dfsb2 34948 Alternate (dual) definition of substitution df-sb 2069 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
20.15.4.17  Lemmas for substitution
 
Theorembj-sbf3 34949 Substitution has no effect on a bound variable (existential quantifier case); see sbf2 2267. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-sbf4 34950 Substitution has no effect on a bound variable (nonfreeness case); see sbf2 2267. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜑)
 
Theorembj-sbnf 34951* Move nonfree predicate in and out of substitution; see sbal 2161 and sbex 2281. (Contributed by BJ, 2-May-2019.)
([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
 
20.15.4.18  Existential uniqueness
 
Theorembj-eu3f 34952* Version of eu3v 2570 where the disjoint variable condition is replaced with a nonfreeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2570. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
20.15.4.19  First-order logic: miscellaneous

Miscellaneous theorems of first-order logic.

 
Theorembj-sblem1 34953* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜒)))
 
Theorembj-sblem2 34954* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜒𝜓)) → ((∃𝑥𝜑𝜒) → ∀𝑥(𝜑𝜓)))
 
Theorembj-sblem 34955* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜒)))
 
Theorembj-sbievw1 34956* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑𝜓))
 
Theorembj-sbievw2 34957* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜓𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑))
 
Theorembj-sbievw 34958* Lemma for substitution. Closed form of equsalvw 2008 and sbievw 2097. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑𝜓))
 
Theorembj-sbievv 34959 Version of sbie 2506 with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023.) (Proof modification is discouraged.)
𝑥𝜓    &   𝑦𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theorembj-moeub 34960 Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑))
 
Theorembj-sbidmOLD 34961 Obsolete proof of sbidm 2514 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theorembj-dvelimdv 34962* Deduction form of dvelim 2451 with disjoint variable conditions. Uncurried (imported) form of bj-dvelimdv1 34963. Typically, 𝑧 is a fresh variable used for the implicit substitution hypothesis that results in 𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as 𝜓(𝑥, 𝑧)). So the theorem says that if x is effectively free in 𝜓(𝑥, 𝑧), then if x and y are not the same variable, then 𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context 𝜑.

One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1918 can be replaced with nfal 2321 followed by nfn 1861.

Remark: nfald 2326 uses ax-11 2156; it might be possible to inline and use ax11w 2128 instead, but there is still a use via 19.12 2325 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)

(𝜑 → Ⅎ𝑥𝜒)    &   (𝑧 = 𝑦 → (𝜒𝜓))       ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
 
Theorembj-dvelimdv1 34963* Curried (exported) form of bj-dvelimdv 34962 (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(𝜑 → Ⅎ𝑥𝜒)    &   (𝑧 = 𝑦 → (𝜒𝜓))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓))
 
Theorembj-dvelimv 34964* A version of dvelim 2451 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑧 = 𝑦 → (𝜓𝜑))       (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
 
Theorembj-nfeel2 34965* Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
 
Theorembj-axc14nf 34966 Proof of a version of axc14 2463 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥𝑦))
 
Theorembj-axc14 34967 Alternate proof of axc14 2463 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
 
TheoremmobidvALT 34968* Alternate proof of mobidv 2549 directly from its analogues albidv 1924 and exbidv 1925, using deduction style. Note the proof structure, similar to mobi 2547. (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. Remove dependency on ax-6 1972, ax-7 2012, ax-12 2173 by adapting proof of mobid 2550. (Revised by BJ, 26-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremsbn1ALT 34969 Alternate proof of sbn1 2107, not using the false constant. (Contributed by BJ, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)
 
20.15.5  Set theory
 
20.15.5.1  Eliminability of class terms

In this section, we give a sketch of the proof of the Eliminability Theorem for class terms in an extensional set theory where quantification occurs only over set variables.

Eliminability of class variables using the $a-statements ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 is an easy result, proved for instance in Appendix X of Azriel Levy, Basic Set Theory, Dover Publications, 2002. Note that viewed from the set.mm axiomatization, it is a metatheorem not formalizable in set.mm. It states: every formula in the language of FOL + + class terms, but without class variables, is provably equivalent (over {FOL, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }) to a formula in the language of FOL + (that is, without class terms).

The proof goes by induction on the complexity of the formula (see op. cit. for details). The base case is that of atomic formulas. The atomic formulas containing class terms are of one of the six following forms: for equality, 𝑥 = {𝑦𝜑}, {𝑥𝜑} = 𝑦, {𝑥𝜑} = {𝑦𝜓}, and for membership, 𝑦 ∈ {𝑥𝜑}, {𝑥𝜑} ∈ 𝑦, {𝑥𝜑} ∈ {𝑦𝜓}. These cases are dealt with by eliminable-veqab 34977, eliminable-abeqv 34978, eliminable-abeqab 34979, eliminable-velab 34976, eliminable-abelv 34980, eliminable-abelab 34981 respectively, which are all proved from {FOL, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }.

(Details on the proof of the above six theorems. To understand how they were systematically proved, look at the theorems "eliminablei" below, which are special instances of df-clab 2716, dfcleq 2731 (proved from {FOL, ax-ext 2709, df-cleq 2730 }), and dfclel 2818 (proved from {FOL, df-clel 2817 }). Indeed, denote by (i) the formula proved by "eliminablei". One sees that the RHS of (1) has no class terms, the RHS's of (2x) have only class terms of the form dealt with by (1), and the RHS's of (3x) have only class terms of the forms dealt with by (1) and (2a). Note that in order to prove eliminable2a 34971, eliminable2b 34972 and eliminable3a 34974, we need to substitute a class variable for a setvar variable. This is possible because setvars are class terms: this is the content of the syntactic theorem cv 1538, which is used in these proofs (this does not appear in the html pages but it is in the set.mm file and you can check it using the Metamath program).)

The induction step relies on the fact that any formula is a FOL-combination of atomic formulas, so if one found equivalents for all atomic formulas constituting the formula, then the same FOL-combination of these equivalents will be equivalent to the original formula.

Note that one has a slightly more precise result: if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥𝜑}, then df-clab 2716 is sufficient (over FOL) to eliminate class terms, and if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥𝜑} and equalities, then df-clab 2716, ax-ext 2709 and df-cleq 2730 are sufficient (over FOL) to eliminate class terms.

To prove that { df-clab 2716, df-cleq 2730, df-clel 2817 } provides a definitional extension of {FOL, ax-ext 2709 }, one needs to prove both the above Eliminability Theorem, which compares the expressive powers of the languages with and without class terms, and the Conservativity Theorem, which compares the deductive powers when one adds { df-clab 2716, df-cleq 2730, df-clel 2817 }. It states that a formula without class terms is provable in one axiom system if and only if it is provable in the other, and that this remains true when one adds further definitions to {FOL, ax-ext 2709 }. It is also proved in op. cit. The proof is more difficult, since one has to construct for each proof of a statement without class terms, an associated proof not using { df-clab 2716, df-cleq 2730, df-clel 2817 }. It involves a careful case study on the structure of the proof tree.

 
Theoremeliminable1 34970 A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
 
Theoremeliminable2a 34971* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝜑}))
 
Theoremeliminable2b 34972* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧𝑦))
 
Theoremeliminable2c 34973* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓}))
 
Theoremeliminable3a 34974* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧𝑦))
 
Theoremeliminable3b 34975* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧 ∈ {𝑦𝜓}))
 
Theoremeliminable-velab 34976 A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
 
Theoremeliminable-veqab 34977* A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremeliminable-abeqv 34978* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧𝑦))
 
Theoremeliminable-abeqab 34979* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓))
 
Theoremeliminable-abelv 34980* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
 
Theoremeliminable-abelab 34981* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ [𝑧 / 𝑦]𝜓))
 
20.15.5.2  Classes without the axiom of extensionality

A few results about classes can be proved without using ax-ext 2709. One could move all theorems from cab 2715 to df-clel 2817 (except for dfcleq 2731 and cvjust 2732) in a subsection "Classes" before the subsection on the axiom of extensionality, together with the theorems below. In that subsection, the last statement should be df-cleq 2730.

Note that without ax-ext 2709, the $a-statements df-clab 2716, df-cleq 2730, and df-clel 2817 are no longer eliminable (see previous section) (but PROBABLY df-clab 2716 is still conservative , while df-cleq 2730 and df-clel 2817 are not). This is not a reason not to study what is provable with them but without ax-ext 2709, in order to gauge their strengths more precisely.

Before that subsection, a subsection "The membership predicate" could group the statements with that are currently in the FOL part (including wcel 2108, wel 2109, ax-8 2110, ax-9 2118).

Remark: the weakening of eleq1 2826 / eleq2 2827 to eleq1w 2821 / eleq2w 2822 can also be done with eleq1i 2829, eqeltri 2835, eqeltrri 2836, eleq1a 2834, eleq1d 2823, eqeltrd 2839, eqeltrrd 2840, eqneltrd 2858, eqneltrrd 2859, nelneq 2863.

Remark: possibility to remove dependency on ax-10 2139, ax-11 2156, ax-13 2372 from nfcri 2893 and theorems using it if one adds a disjoint variable condition (that theorem is typically used with dummy variables, so the disjoint variable condition addition is not very restrictive), and then shorten nfnfc 2918.

 
Theorembj-denoteslem 34982* Lemma for bj-denotes 34983. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
(∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-denotes 34983* This would be the justification theorem for the definition of the unary predicate "E!" by ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be interpreted as "𝐴 exists" (as a set) or "𝐴 denotes" (in the sense of free logic).

A shorter proof using bitri 274 (to add an intermediate proposition 𝑧𝑧 = 𝐴 with a fresh 𝑧), cbvexvw 2041, and eqeq1 2742, requires the core axioms and { ax-9 2118, ax-ext 2709, df-cleq 2730 } whereas this proof requires the core axioms and { ax-8 2110, df-clab 2716, df-clel 2817 }.

Theorem bj-issetwt 34986 proves that "existing" is equivalent to being a member of a class abstraction. It also requires, with the present proof, { ax-8 2110, df-clab 2716, df-clel 2817 } (whereas with the shorter proof from cbvexvw 2041 and eqeq1 2742 it would require { ax-8 2110, ax-9 2118, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }). That every class is equal to a class abstraction is proved by abid1 2880, which requires { ax-8 2110, ax-9 2118, ax-ext 2709, df-clab 2716, df-cleq 2730, df-clel 2817 }.

Note that there is no disjoint variable condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2372. Actually, the proof depends only on the logical axioms ax-1 6 through ax-7 2012 and sp 2178.

The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of nonexistent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: these are derived from ax-ext 2709 and df-cleq 2730 (e.g., eqid 2738 and eqeq1 2742). In particular, one cannot even prove 𝑥𝑥 = 𝐴𝐴 = 𝐴 without ax-ext 2709 and df-cleq 2730.

(Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)

(∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-issettru 34984* Weak version of isset 3435 without ax-ext 2709. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
(∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-elabtru 34985 This is as close as we can get to proving extensionality for "the" "universal" class without ax-ext 2709. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
(𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-issetwt 34986* Closed form of bj-issetw 34987. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴))
 
Theorembj-issetw 34987* The closest one can get to isset 3435 without using ax-ext 2709. See also vexw 2721. Note that the only disjoint variable condition is between 𝑦 and 𝐴. From there, one can prove isset 3435 using eleq2i 2830 (which requires ax-ext 2709 and df-cleq 2730). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
𝜑       (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-elissetALT 34988* Alternate proof of elisset 2820. This is essentially the same proof as seen by inlining bj-denotes 34983 and bj-denoteslem 34982. Use elissetv 2819 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theorembj-issetiv 34989* Version of bj-isseti 34990 with a disjoint variable condition on 𝑥, 𝑉. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general than isseti 3437 as long as elex 3440 is not available (and the non-dependence of bj-issetiv 34989 on special properties of the universal class V is obvious). Prefer its use over bj-isseti 34990 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-isseti 34990* Version of isseti 3437 with a class variable 𝑉 in the hypothesis instead of V for extra generality. This is indeed more general than isseti 3437 as long as elex 3440 is not available (and the non-dependence of bj-isseti 34990 on special properties of the universal class V is obvious). Use bj-issetiv 34989 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-ralvw 34991 A weak version of ralv 3446 not using ax-ext 2709 (nor df-cleq 2730, df-clel 2817, df-v 3424), and only core FOL axioms. See also bj-rexvw 34992. The analogues for reuv 3448 and rmov 3449 are not proved. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∀𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-rexvw 34992 A weak version of rexv 3447 not using ax-ext 2709 (nor df-cleq 2730, df-clel 2817, df-v 3424), and only core FOL axioms. See also bj-ralvw 34991. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-rababw 34993 A weak version of rabab 3450 not using df-clel 2817 nor df-v 3424 (but requiring ax-ext 2709) nor ax-12 2173. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}
 
Theorembj-rexcom4bv 34994* Version of rexcom4b 3451 and bj-rexcom4b 34995 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2069 and df-clab 2716 (so that it depends on df-clel 2817 and df-rex 3069 only on top of first-order logic). Prefer its use over bj-rexcom4b 34995 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-rexcom4b 34995* Remove from rexcom4b 3451 dependency on ax-ext 2709 and ax-13 2372 (and on df-or 844, df-cleq 2730, df-nfc 2888, df-v 3424). The hypothesis uses 𝑉 instead of V (see bj-isseti 34990 for the motivation). Use bj-rexcom4bv 34994 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-ceqsalt0 34996 The FOL content of ceqsalt 3452. Lemma for bj-ceqsalt 34998 and bj-ceqsaltv 34999. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt1 34997 The FOL content of ceqsalt 3452. Lemma for bj-ceqsalt 34998 and bj-ceqsaltv 34999. TODO: consider removing if it does not add anything to bj-ceqsalt0 34996. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
(𝜃 → ∃𝑥𝜒)       ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑𝜓)) ∧ 𝜃) → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt 34998* Remove from ceqsalt 3452 dependency on ax-ext 2709 (and on df-cleq 2730 and df-v 3424). Note: this is not doable with ceqsralt 3453 (or ceqsralv 3459), which uses eleq1 2826, but the same dependence removal is possible for ceqsalg 3454, ceqsal 3456, ceqsalv 3457, cgsexg 3464, cgsex2g 3465, cgsex4g 3466, ceqsex 3468, ceqsexv 3469, ceqsex2 3472, ceqsex2v 3473, ceqsex3v 3474, ceqsex4v 3475, ceqsex6v 3476, ceqsex8v 3477, gencbvex 3478 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3479, gencbval 3480, vtoclgft 3482 (it uses , whose justification nfcjust 2887 does not use ax-ext 2709) and several other vtocl* theorems (see for instance bj-vtoclg1f 35030). See also bj-ceqsaltv 34999. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsaltv 34999* Version of bj-ceqsalt 34998 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2069 and df-clab 2716. Prefer its use over bj-ceqsalt 34998 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg0 35000 The FOL content of ceqsalg 3454. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))       (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >