Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-goeq | Structured version Visualization version GIF version |
Description: Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1o) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2709 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-goeq | ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgoq 33299 | . 2 class =𝑔 | |
2 | vu | . . 3 setvar 𝑢 | |
3 | vv | . . 3 setvar 𝑣 | |
4 | com 7687 | . . 3 class ω | |
5 | vw | . . . 4 setvar 𝑤 | |
6 | 2 | cv 1538 | . . . . . 6 class 𝑢 |
7 | 3 | cv 1538 | . . . . . 6 class 𝑣 |
8 | 6, 7 | cun 3881 | . . . . 5 class (𝑢 ∪ 𝑣) |
9 | 8 | csuc 6253 | . . . 4 class suc (𝑢 ∪ 𝑣) |
10 | 5 | cv 1538 | . . . . . . 7 class 𝑤 |
11 | cgoe 33195 | . . . . . . 7 class ∈𝑔 | |
12 | 10, 6, 11 | co 7255 | . . . . . 6 class (𝑤∈𝑔𝑢) |
13 | 10, 7, 11 | co 7255 | . . . . . 6 class (𝑤∈𝑔𝑣) |
14 | cgob 33298 | . . . . . 6 class ↔𝑔 | |
15 | 12, 13, 14 | co 7255 | . . . . 5 class ((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣)) |
16 | 15, 10 | cgol 33197 | . . . 4 class ∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣)) |
17 | 5, 9, 16 | csb 3828 | . . 3 class ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣)) |
18 | 2, 3, 4, 4, 17 | cmpo 7257 | . 2 class (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) |
19 | 1, 18 | wceq 1539 | 1 wff =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |