HomeHome Metamath Proof Explorer
Theorem List (p. 348 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 34701-34800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.15.2  Modal logic

In this section, we prove some theorems related to modal logic. For modal logic, we refer to https://en.wikipedia.org/wiki/Kripke_semantics, https://en.wikipedia.org/wiki/Modal_logic and https://plato.stanford.edu/entries/logic-modal/.

Monadic first-order logic (i.e., with quantification over only one variable) is bi-interpretable with modal logic, by mapping 𝑥 to "necessity" (generally denoted by a box) and 𝑥 to "possibility" (generally denoted by a diamond). Therefore, we use these quantifiers so as not to introduce new symbols. (To be strictly within modal logic, we should add disjoint variable conditions between 𝑥 and any other metavariables appearing in the statements.)

For instance, ax-gen 1799 corresponds to the necessitation rule of modal logic, and ax-4 1813 corresponds to the distributivity axiom (K) of modal logic, also called the Kripke scheme. Modal logics satisfying these rule and axiom are called "normal modal logics", of which the most important modal logics are.

The minimal normal modal logic is also denoted by (K). Here are a few normal modal logics with their axiomatizations (on top of (K)): (K) axiomatized by no supplementary axioms; (T) axiomatized by the axiom T; (K4) axiomatized by the axiom 4; (S4) axiomatized by the axioms T,4; (S5) axiomatized by the axioms T,5 or D,B,4; (GL) axiomatized by the axiom GL.

The last one, called Gödel–Löb logic or provability logic, is important because it describes exactly the properties of provability in Peano arithmetic, as proved by Robert Solovay. See for instance https://plato.stanford.edu/entries/logic-provability/ 1813. A basic result in this logic is bj-gl4 34704.

 
Theorembj-axdd2 34701 This implication, proved using only ax-gen 1799 and ax-4 1813 on top of propositional calculus (hence holding, up to the standard interpretation, in any normal modal logic), shows that the axiom scheme 𝑥 implies the axiom scheme (∀𝑥𝜑 → ∃𝑥𝜑). These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axd2d 34702. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜓))
 
Theorembj-axd2d 34702 This implication, proved using only ax-gen 1799 on top of propositional calculus (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme (∀𝑥𝜑 → ∃𝑥𝜑) implies the axiom scheme 𝑥. These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axdd2 34701. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
((∀𝑥⊤ → ∃𝑥⊤) → ∃𝑥⊤)
 
Theorembj-axtd 34703 This implication, proved from propositional calculus only (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme (∀𝑥𝜑𝜑) (modal T) implies the axiom scheme (∀𝑥𝜑 → ∃𝑥𝜑) (modal D). See also bj-axdd2 34701 and bj-axd2d 34702. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
((∀𝑥 ¬ 𝜑 → ¬ 𝜑) → ((∀𝑥𝜑𝜑) → (∀𝑥𝜑 → ∃𝑥𝜑)))
 
Theorembj-gl4 34704 In a normal modal logic, the modal axiom GL implies the modal axiom (4). Translated to first-order logic, Axiom GL reads (∀𝑥(∀𝑥𝜑𝜑) → ∀𝑥𝜑). Note that the antecedent of bj-gl4 34704 is an instance of the axiom GL, with 𝜑 replaced by (∀𝑥𝜑𝜑), which is a modality sometimes called the "strong necessity" of 𝜑. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
((∀𝑥(∀𝑥(∀𝑥𝜑𝜑) → (∀𝑥𝜑𝜑)) → ∀𝑥(∀𝑥𝜑𝜑)) → (∀𝑥𝜑 → ∀𝑥𝑥𝜑))
 
Theorembj-axc4 34705 Over minimal calculus, the modal axiom (4) (hba1 2293) and the modal axiom (K) (ax-4 1813) together imply axc4 2319. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
((∀𝑥𝜑 → ∀𝑥𝑥𝜑) → ((∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))))
 
20.15.3  Provability logic

In this section, we assume that, on top of propositional calculus, there is given a provability predicate Prv satisfying the three axioms ax-prv1 34707 and ax-prv2 34708 and ax-prv3 34709. Note the similarity with ax-gen 1799, ax-4 1813 and hba1 2293 respectively. These three properties of Prv are often called the Hilbert–Bernays–Löb derivability conditions, or the Hilbert–Bernays provability conditions.

This corresponds to the modal logic (K4) (see previous section for modal logic). The interpretation of provability logic is the following: we are given a background first-order theory T, the wff Prv 𝜑 means "𝜑 is provable in T", and the turnstile indicates provability in T.

Beware that "provability logic" often means (K) augmented with the Gödel–Löb axiom GL, which we do not assume here (at least for the moment). See for instance https://plato.stanford.edu/entries/logic-provability/ 2293.

Provability logic is worth studying because whenever T is a first-order theory containing Robinson arithmetic (a fragment of Peano arithmetic), one can prove (using Gödel numbering, and in the much weaker primitive recursive arithmetic) that there exists in T a provability predicate Prv satisfying the above three axioms. (We do not construct this predicate in this section; this is still a project.)

The main theorems of this section are the "easy parts" of the proofs of Gödel's second incompleteness theorem (bj-babygodel 34712) and Löb's theorem (bj-babylob 34713). See the comments of these theorems for details.

 
Syntaxcprvb 34706 Syntax for the provability predicate.
wff Prv 𝜑
 
Axiomax-prv1 34707 First property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.)
𝜑       Prv 𝜑
 
Axiomax-prv2 34708 Second property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.)
(Prv (𝜑𝜓) → (Prv 𝜑 → Prv 𝜓))
 
Axiomax-prv3 34709 Third property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.)
(Prv 𝜑 → Prv Prv 𝜑)
 
Theoremprvlem1 34710 An elementary property of the provability predicate. (Contributed by BJ, 3-Apr-2019.)
(𝜑𝜓)       (Prv 𝜑 → Prv 𝜓)
 
Theoremprvlem2 34711 An elementary property of the provability predicate. (Contributed by BJ, 3-Apr-2019.)
(𝜑 → (𝜓𝜒))       (Prv 𝜑 → (Prv 𝜓 → Prv 𝜒))
 
Theorembj-babygodel 34712 See the section header comments for the context.

The first hypothesis reads "𝜑 is true if and only if it is not provable in T" (and having this first hypothesis means that we can prove this fact in T). The wff 𝜑 is a formal version of the sentence "This sentence is not provable". The hard part of the proof of Gödel's theorem is to construct such a 𝜑, called a "Gödel–Rosser sentence", for a first-order theory T which is effectively axiomatizable and contains Robinson arithmetic, through Gödel diagonalization (this can be done in primitive recursive arithmetic). The second hypothesis means that is not provable in T, that is, that the theory T is consistent (and having this second hypothesis means that we can prove in T that the theory T is consistent). The conclusion is the falsity, so having the conclusion means that T can prove the falsity, that is, T is inconsistent.

Therefore, taking the contrapositive, this theorem expresses that if a first-order theory is consistent (and one can prove in it that some formula is true if and only if it is not provable in it), then this theory does not prove its own consistency.

This proof is due to George Boolos, Gödel's Second Incompleteness Theorem Explained in Words of One Syllable, Mind, New Series, Vol. 103, No. 409 (January 1994), pp. 1--3.

(Contributed by BJ, 3-Apr-2019.)

(𝜑 ↔ ¬ Prv 𝜑)    &    ¬ Prv ⊥       
 
Theorembj-babylob 34713 See the section header comments for the context, as well as the comments for bj-babygodel 34712.

Löb's theorem when the Löb sentence is given as a hypothesis (the hard part of the proof of Löb's theorem is to construct this Löb sentence; this can be done, using Gödel diagonalization, for any first-order effectively axiomatizable theory containing Robinson arithmetic). More precisely, the present theorem states that if a first-order theory proves that the provability of a given sentence entails its truth (and if one can construct in this theory a provability predicate and a Löb sentence, given here as the first hypothesis), then the theory actually proves that sentence.

See for instance, Eliezer Yudkowsky, The Cartoon Guide to Löb's Theorem (available at http://yudkowsky.net/rational/lobs-theorem/ 34712).

(Contributed by BJ, 20-Apr-2019.)

(𝜓 ↔ (Prv 𝜓𝜑))    &   (Prv 𝜑𝜑)       𝜑
 
Theorembj-godellob 34714 Proof of Gödel's theorem from Löb's theorem (see comments at bj-babygodel 34712 and bj-babylob 34713 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 ↔ ¬ Prv 𝜑)    &    ¬ Prv ⊥       
 
20.15.4  First-order logic

Utility lemmas or strengthenings of theorems in the main part (biconditional or closed forms, or fewer disjoint variable conditions, or disjoint variable conditions replaced with nonfreeness hypotheses...). Sorted in the same order as in the main part.

 
20.15.4.1  Adding ax-gen
 
Theorembj-genr 34715 Generalization rule on the right conjunct. See 19.28 2224. (Contributed by BJ, 7-Jul-2021.)
(𝜑𝜓)       (𝜑 ∧ ∀𝑥𝜓)
 
Theorembj-genl 34716 Generalization rule on the left conjunct. See 19.27 2223. (Contributed by BJ, 7-Jul-2021.)
(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorembj-genan 34717 Generalization rule on a conjunction. Forward inference associated with 19.26 1874. (Contributed by BJ, 7-Jul-2021.)
(𝜑𝜓)       (∀𝑥𝜑 ∧ ∀𝑥𝜓)
 
Theorembj-mpgs 34718 From a closed form theorem (the major premise) with an antecedent in the "strong necessity" modality (in the language of modal logic), deduce the inference 𝜑𝜓. Strong necessity is stronger than necessity, and equivalent to it when sp 2178 (modal T) is available. Therefore, this theorem is stronger than mpg 1801 when sp 2178 is not available. (Contributed by BJ, 1-Nov-2023.)
𝜑    &   ((𝜑 ∧ ∀𝑥𝜑) → 𝜓)       𝜓
 
20.15.4.2  Adding ax-4
 
Theorembj-2alim 34719 Closed form of 2alimi 1816. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓))
 
Theorembj-2exim 34720 Closed form of 2eximi 1839. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓))
 
Theorembj-alanim 34721 Closed form of alanimi 1820. (Contributed by BJ, 6-May-2019.)
(∀𝑥((𝜑𝜓) → 𝜒) → ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒))
 
Theorembj-2albi 34722 Closed form of 2albii 1824. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓))
 
Theorembj-notalbii 34723 Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 4305 (103>94), ballotlem2 32355 (2655>2648), bnj1143 32670 (522>519), hausdiag 22704 (2119>2104). (Contributed by BJ, 17-Jul-2021.)
(𝜑𝜓)       (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓)
 
Theorembj-2exbi 34724 Closed form of 2exbii 1852. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))
 
Theorembj-3exbi 34725 Closed form of 3exbii 1853. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦𝑧(𝜑𝜓) → (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓))
 
Theorembj-sylgt2 34726 Uncurried (imported) form of sylgt 1825. (Contributed by BJ, 2-May-2019.)
((∀𝑥(𝜓𝜒) ∧ (𝜑 → ∀𝑥𝜓)) → (𝜑 → ∀𝑥𝜒))
 
Theorembj-alrimg 34727 The general form of the *alrim* family of theorems: if 𝜑 is substituted for 𝜓, then the antecedent expresses a form of nonfreeness of 𝑥 in 𝜑, so the theorem means that under a nonfreeness condition in an antecedent, one can deduce from the universally quantified implication an implication where the consequent is universally quantified. Dual of bj-exlimg 34731. (Contributed by BJ, 9-Dec-2023.)
((𝜑 → ∀𝑥𝜓) → (∀𝑥(𝜓𝜒) → (𝜑 → ∀𝑥𝜒)))
 
Theorembj-alrimd 34728 A slightly more general alrimd 2211. A common usage will have 𝜑 substituted for 𝜓 and 𝜒 substituted for 𝜃, giving a form closer to alrimd 2211. (Contributed by BJ, 25-Dec-2023.)
(𝜑 → ∀𝑥𝜓)    &   (𝜑 → (𝜒 → ∀𝑥𝜃))    &   (𝜓 → (𝜃𝜏))       (𝜑 → (𝜒 → ∀𝑥𝜏))
 
Theorembj-sylget 34729 Dual statement of sylgt 1825. Closed form of bj-sylge 34732. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜒𝜑) → ((∃𝑥𝜑𝜓) → (∃𝑥𝜒𝜓)))
 
Theorembj-sylget2 34730 Uncurried (imported) form of bj-sylget 34729. (Contributed by BJ, 2-May-2019.)
((∀𝑥(𝜑𝜓) ∧ (∃𝑥𝜓𝜒)) → (∃𝑥𝜑𝜒))
 
Theorembj-exlimg 34731 The general form of the *exlim* family of theorems: if 𝜑 is substituted for 𝜓, then the antecedent expresses a form of nonfreeness of 𝑥 in 𝜑, so the theorem means that under a nonfreeness condition in a consequent, one can deduce from the universally quantified implication an implication where the antecedent is existentially quantified. Dual of bj-alrimg 34727. (Contributed by BJ, 9-Dec-2023.)
((∃𝑥𝜑𝜓) → (∀𝑥(𝜒𝜑) → (∃𝑥𝜒𝜓)))
 
Theorembj-sylge 34732 Dual statement of sylg 1826 (the final "e" in the label stands for "existential (version of sylg 1826)". Variant of exlimih 2289. (Contributed by BJ, 25-Dec-2023.)
(∃𝑥𝜑𝜓)    &   (𝜒𝜑)       (∃𝑥𝜒𝜓)
 
Theorembj-exlimd 34733 A slightly more general exlimd 2214. A common usage will have 𝜑 substituted for 𝜓 and 𝜃 substituted for 𝜏, giving a form closer to exlimd 2214. (Contributed by BJ, 25-Dec-2023.)
(𝜑 → ∀𝑥𝜓)    &   (𝜑 → (∃𝑥𝜃𝜏))    &   (𝜓 → (𝜒𝜃))       (𝜑 → (∃𝑥𝜒𝜏))
 
Theorembj-nfimexal 34734 A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 1842) and the converse implication is the join of instances of bj-alrimg 34727 and bj-exlimg 34731 (see 19.38a 1843 and 19.38b 1844). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023.)
(((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
 
Theorembj-alexim 34735 Closed form of aleximi 1835. Note: this proof is shorter, so aleximi 1835 could be deduced from it (exim 1837 would have to be proved first, see bj-eximALT 34749 but its proof is shorter (currently almost a subproof of aleximi 1835)). (Contributed by BJ, 8-Nov-2021.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
 
Theorembj-nexdh 34736 Closed form of nexdh 1869 (actually, its general instance). (Contributed by BJ, 6-May-2019.)
(∀𝑥(𝜑 → ¬ 𝜓) → ((𝜒 → ∀𝑥𝜑) → (𝜒 → ¬ ∃𝑥𝜓)))
 
Theorembj-nexdh2 34737 Uncurried (imported) form of bj-nexdh 34736. (Contributed by BJ, 6-May-2019.)
((∀𝑥(𝜑 → ¬ 𝜓) ∧ (𝜒 → ∀𝑥𝜑)) → (𝜒 → ¬ ∃𝑥𝜓))
 
Theorembj-hbxfrbi 34738 Closed form of hbxfrbi 1828. Note: it is less important than nfbiit 1854. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 34850) in order not to require sp 2178 (modal T). See bj-hbyfrbi 34739 for its version with existential quantifiers. (Contributed by BJ, 6-May-2019.)
(((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)))
 
Theorembj-hbyfrbi 34739 Version of bj-hbxfrbi 34738 with existential quantifiers. (Contributed by BJ, 23-Aug-2023.)
(((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((∃𝑥𝜑𝜑) ↔ (∃𝑥𝜓𝜓)))
 
Theorembj-exalim 34740 Distribute quantifiers over a nested implication.

This and the following theorems are the general instances of already proved theorems. They could be moved to the main part, before ax-5 1914. I propose to move to the main part: bj-exalim 34740, bj-exalimi 34741, bj-exalims 34742, bj-exalimsi 34743, bj-ax12i 34745, bj-ax12wlem 34752, bj-ax12w 34785. A new label is needed for bj-ax12i 34745 and label suggestions are welcome for the others. I also propose to change ¬ ∀𝑥¬ to 𝑥 in speimfw 1968 and spimfw 1970 (other spim* theorems use 𝑥 and very few theorems in set.mm use ¬ ∀𝑥¬). (Contributed by BJ, 8-Nov-2021.)

(∀𝑥(𝜑 → (𝜓𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒)))
 
Theorembj-exalimi 34741 An inference for distributing quantifiers over a nested implication. The canonical derivation from its closed form bj-exalim 34740 (using mpg 1801) has fewer essential steps, but more steps in total (yielding a longer compressed proof). (Almost) the general statement that speimfw 1968 proves. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))       (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒))
 
Theorembj-exalims 34742 Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1970 proves. (Contributed by BJ, 29-Sep-2019.)
(∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒))       (∀𝑥(𝜑 → (𝜓𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓𝜒)))
 
Theorembj-exalimsi 34743 An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1970 proves. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))    &   (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒))       (∃𝑥𝜑 → (∀𝑥𝜓𝜒))
 
Theorembj-ax12ig 34744 A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 34745. (Contributed by BJ, 19-Dec-2020.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-ax12i 34745 A weakening of bj-ax12ig 34744 that is sufficient to prove a weak form of the axiom of substitution ax-12 2173. The general statement of which ax12i 1971 is an instance. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))    &   (𝜒 → ∀𝑥𝜒)       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-nfimt 34746 Closed form of nfim 1900 and curried (exported) form of nfimt 1899. (Contributed by BJ, 20-Oct-2021.)
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑𝜓)))
 
Theorembj-cbvalimt 34747 A lemma in closed form used to prove bj-cbval 34757 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1881 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.)
(∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → ((∀𝑥𝜑 → ∀𝑦𝑥𝜑) → (∀𝑦(∃𝑥𝜓𝜓) → (∀𝑥𝜑 → ∀𝑦𝜓)))))
 
Theorembj-cbveximt 34748 A lemma in closed form used to prove bj-cbvex 34758 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1881 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.)
(∀𝑥𝑦𝜒 → (∀𝑥𝑦(𝜒 → (𝜑𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → ((∃𝑥𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓)))))
 
Theorembj-eximALT 34749 Alternate proof of exim 1837 directly from alim 1814 by using df-ex 1784 (using duality of and . (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theorembj-aleximiALT 34750 Alternate proof of aleximi 1835 from exim 1837, which is sometimes used as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theorembj-eximcom 34751 A commuted form of exim 1837 which is sometimes posited as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.)
(∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
 
20.15.4.3  Adding ax-5
 
Theorembj-ax12wlem 34752* A lemma used to prove a weak version of the axiom of substitution ax-12 2173. (Temporary comment: The general statement that ax12wlem 2130 proves.) (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-cbvalim 34753* A lemma used to prove bj-cbval 34757 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-cbvexim 34754* A lemma used to prove bj-cbvex 34758 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜒 → (∀𝑥𝑦(𝜒 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓)))
 
Theorembj-cbvalimi 34755* An equality-free general instance of one half of a precise form of bj-cbval 34757. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝑦𝑥𝜒       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theorembj-cbveximi 34756* An equality-free general instance of one half of a precise form of bj-cbvex 34758. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝑥𝑦𝜒       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbval 34757* Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
𝑦𝑥 𝑥 = 𝑦    &   𝑥𝑦 𝑦 = 𝑥    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝑥𝑥 = 𝑦)       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theorembj-cbvex 34758* Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
𝑦𝑥 𝑥 = 𝑦    &   𝑥𝑦 𝑦 = 𝑥    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝑥𝑥 = 𝑦)       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Syntaxwmoo 34759 Syntax for BJ's version of the uniqueness quantifier.
wff ∃**𝑥𝜑
 
Definitiondf-bj-mo 34760* Definition of the uniqueness quantifier which is correct on the empty domain. Instead of the fresh variable 𝑧, one could save a dummy variable by using 𝑥 or 𝑦 at the cost of having nested quantifiers on the same variable. (Contributed by BJ, 12-Mar-2023.)
(∃**𝑥𝜑 ↔ ∀𝑧𝑦𝑥(𝜑𝑥 = 𝑦))
 
20.15.4.4  Equality and substitution
 
Theorembj-ssbeq 34761* Substitution in an equality, disjoint variables case. Uses only ax-1 6 through ax-6 1972. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 34761 first with a DV condition on 𝑥, 𝑡, and then in the general case. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
([𝑡 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧)
 
Theorembj-ssblem1 34762* A lemma for the definiens of df-sb 2069. An instance of sp 2178 proved without it. Note: it has a common subproof with sbjust 2067. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssblem2 34763* An instance of ax-11 2156 proved without it. The converse may not be provable without ax-11 2156 (since using alcomiw 2047 would require a DV on 𝜑, 𝑥, which defeats the purpose). (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑥𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) → ∀𝑦𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)))
 
Theorembj-ax12v 34764* A weaker form of ax-12 2173 and ax12v 2174, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
Theorembj-ax12 34765* Remove a DV condition from bj-ax12v 34764 (using core axioms only). (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
Theorembj-ax12ssb 34766* Axiom bj-ax12 34765 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
[𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑)
 
Theorembj-19.41al 34767 Special case of 19.41 2231 proved from core axioms, ax-10 2139 (modal5), and hba1 2293 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓))
 
Theorembj-equsexval 34768* Special case of equsexv 2263 proved from core axioms, ax-10 2139 (modal5), and hba1 2293 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝜓)
 
Theorembj-subst 34769* Proof of sbalex 2238 from core axioms, ax-10 2139 (modal5), and bj-ax12 34765. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theorembj-ssbid2 34770 A special case of sbequ2 2244. (Contributed by BJ, 22-Dec-2020.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theorembj-ssbid2ALT 34771 Alternate proof of bj-ssbid2 34770, not using sbequ2 2244. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theorembj-ssbid1 34772 A special case of sbequ1 2243. (Contributed by BJ, 22-Dec-2020.)
(𝜑 → [𝑥 / 𝑥]𝜑)
 
Theorembj-ssbid1ALT 34773 Alternate proof of bj-ssbid1 34772, not using sbequ1 2243. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → [𝑥 / 𝑥]𝜑)
 
Theorembj-ax6elem1 34774* Lemma for bj-ax6e 34776. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theorembj-ax6elem2 34775* Lemma for bj-ax6e 34776. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
 
Theorembj-ax6e 34776 Proof of ax6e 2383 (hence ax6 2384) from Tarski's system, ax-c9 36831, ax-c16 36833. Remark: ax-6 1972 is used only via its principal (unbundled) instance ax6v 1973. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦
 
20.15.4.5  Adding ax-6
 
Theorembj-spimvwt 34777* Closed form of spimvw 2000. See also spimt 2386. (Contributed by BJ, 8-Nov-2021.)
(∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑𝜓))
 
Theorembj-spnfw 34778 Theorem close to a closed form of spnfw 1984. (Contributed by BJ, 12-May-2019.)
((∃𝑥𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-cbvexiw 34779* Change bound variable. This is to cbvexvw 2041 what cbvaliw 2010 is to cbvalvw 2040. TODO: move after cbvalivw 2011. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbvexivw 34780* Change bound variable. This is to cbvexvw 2041 what cbvalivw 2011 is to cbvalvw 2040. TODO: move after cbvalivw 2011. (Contributed by BJ, 17-Mar-2020.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-modald 34781 A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.)
(∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theorembj-denot 34782* A weakening of ax-6 1972 and ax6v 1973. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.)
(𝑥 = 𝑥 → ¬ ∀𝑦 ¬ 𝑦 = 𝑥)
 
Theorembj-eqs 34783* A lemma for substitutions, proved from Tarski's FOL. The version without DV (𝑥, 𝑦) is true but requires ax-13 2372. The disjoint variable condition DV (𝑥, 𝜑) is necessary for both directions: consider substituting 𝑥 = 𝑧 for 𝜑. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
20.15.4.6  Adding ax-7
 
Theorembj-cbvexw 34784* Change bound variable. This is to cbvexvw 2041 what cbvalw 2039 is to cbvalvw 2040. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (∃𝑦𝑥𝜑 → ∃𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theorembj-ax12w 34785* The general statement that ax12w 2131 proves. (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))    &   (𝑦 = 𝑧 → (𝜓𝜃))       (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑𝜓)))
 
20.15.4.7  Membership predicate, ax-8 and ax-9
 
Theorembj-ax89 34786 A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2110 and ax-9 2118. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2110 and ax-9 2118, as proved here. In the other direction, one can prove ax-8 2110 (respectively ax-9 2118) from bj-ax89 34786 by using mpan2 687 (respectively mpan 686) and equid 2016. TODO: move to main part. (Contributed by BJ, 3-Oct-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-elequ12 34787 An identity law for the non-logical predicate, which combines elequ1 2115 and elequ2 2123. For the analogous theorems for class terms, see eleq1 2826, eleq2 2827 and eleq12 2828. TODO: move to main part. (Contributed by BJ, 29-Sep-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-cleljusti 34788* One direction of cleljust 2117, requiring only ax-1 6-- ax-5 1914 and ax8v1 2112. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.)
(∃𝑧(𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
 
20.15.4.8  Adding ax-11
 
Theorembj-alcomexcom 34789 Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 1813 section, soon after 2nexaln 1833, and used to prove excom 2164. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.)
((∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))
 
Theorembj-hbalt 34790 Closed form of hbal 2169. When in main part, prove hbal 2169 and hbald 2170 from it. (Contributed by BJ, 2-May-2019.)
(∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
20.15.4.9  Adding ax-12
 
Theoremaxc11n11 34791 Proof of axc11n 2426 from { ax-1 6-- ax-7 2012, axc11 2430 } . Almost identical to axc11nfromc11 36867. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremaxc11n11r 34792 Proof of axc11n 2426 from { ax-1 6-- ax-7 2012, axc9 2382, axc11r 2366 } (note that axc16 2256 is provable from { ax-1 6-- ax-7 2012, axc11r 2366 }).

Note that axc11n 2426 proves (over minimal calculus) that axc11 2430 and axc11r 2366 are equivalent. Therefore, axc11n11 34791 and axc11n11r 34792 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2430 appears slightly stronger since axc11n11r 34792 requires axc9 2382 while axc11n11 34791 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-axc16g16 34793* Proof of axc16g 2255 from { ax-1 6-- ax-7 2012, axc16 2256 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theorembj-ax12v3 34794* A weak version of ax-12 2173 which is stronger than ax12v 2174. Note that if one assumes reflexivity of equality 𝑥 = 𝑥 (equid 2016), then bj-ax12v3 34794 implies ax-5 1914 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 34795. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ax12v3ALT 34795* Alternate proof of bj-ax12v3 34794. Uses axc11r 2366 and axc15 2422 instead of ax-12 2173. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-sb 34796* A weak variant of sbid2 2512 not requiring ax-13 2372 nor ax-10 2139. On top of Tarski's FOL, one implication requires only ax12v 2174, and the other requires only sp 2178. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-modalbe 34797 The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2317. (Contributed by BJ, 20-Oct-2019.)
(𝜑 → ∀𝑥𝑥𝜑)
 
Theorembj-spst 34798 Closed form of sps 2180. Once in main part, prove sps 2180 and spsd 2182 from it. (Contributed by BJ, 20-Oct-2019.)
((𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-19.21bit 34799 Closed form of 19.21bi 2184. (Contributed by BJ, 20-Oct-2019.)
((𝜑 → ∀𝑥𝜓) → (𝜑𝜓))
 
Theorembj-19.23bit 34800 Closed form of 19.23bi 2186. (Contributed by BJ, 20-Oct-2019.)
((∃𝑥𝜑𝜓) → (𝜑𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >