![]() |
Metamath
Proof Explorer Theorem List (p. 348 of 443) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28474) |
![]() (28475-29999) |
![]() (30000-44271) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isriscg 34701* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) | ||
Theorem | isrisc 34702* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) | ||
Theorem | risc 34703* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) | ||
Theorem | risci 34704 | Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑅 ≃𝑟 𝑆) | ||
Theorem | riscer 34705 | Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ≃𝑟 Er dom ≃𝑟 | ||
Syntax | ccm2 34706 | Extend class notation with a class that adds commutativity to various flavors of rings. |
class Com2 | ||
Definition | df-com2 34707* | A device to add commutativity to various sorts of rings. I use ran 𝑔 because I suppose 𝑔 has a neutral element and therefore is onto. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
⊢ Com2 = {〈𝑔, ℎ〉 ∣ ∀𝑎 ∈ ran 𝑔∀𝑏 ∈ ran 𝑔(𝑎ℎ𝑏) = (𝑏ℎ𝑎)} | ||
Syntax | cfld 34708 | Extend class notation with the class of all fields. |
class Fld | ||
Definition | df-fld 34709 | Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.) |
⊢ Fld = (DivRingOps ∩ Com2) | ||
Syntax | ccring 34710 | Extend class notation with the class of commutative rings. |
class CRingOps | ||
Definition | df-crngo 34711 | Define the class of commutative rings. (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ CRingOps = (RingOps ∩ Com2) | ||
Theorem | iscom2 34712* | A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) | ||
Theorem | iscrngo 34713 | The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | ||
Theorem | iscrngo2 34714* | The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) | ||
Theorem | iscringd 34715* | Conditions that determine a commutative ring. (Contributed by Jeff Madsen, 20-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ (𝜑 → 𝐺 ∈ AbelOp) & ⊢ (𝜑 → 𝑋 = ran 𝐺) & ⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) ⇒ ⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ CRingOps) | ||
Theorem | flddivrng 34716 | A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | ||
Theorem | crngorngo 34717 | A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | ||
Theorem | crngocom 34718 | The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) | ||
Theorem | crngm23 34719 | Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) | ||
Theorem | crngm4 34720 | Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) | ||
Theorem | fldcrng 34721 | A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | ||
Theorem | isfld2 34722 | The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | ||
Theorem | crngohomfo 34723 | The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → 𝑆 ∈ CRingOps) | ||
Syntax | cidl 34724 | Extend class notation with the class of ideals. |
class Idl | ||
Syntax | cpridl 34725 | Extend class notation with the class of prime ideals. |
class PrIdl | ||
Syntax | cmaxidl 34726 | Extend class notation with the class of maximal ideals. |
class MaxIdl | ||
Definition | df-idl 34727* | Define the class of (two-sided) ideals of a ring 𝑅. A subset of 𝑅 is an ideal if it contains 0, is closed under addition, and is closed under multiplication on either side by any element of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st ‘𝑟) ∣ ((GId‘(1st ‘𝑟)) ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥(1st ‘𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st ‘𝑟)((𝑧(2nd ‘𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd ‘𝑟)𝑧) ∈ 𝑖)))}) | ||
Definition | df-pridl 34728* | Define the class of prime ideals of a ring 𝑅. A proper ideal 𝐼 of 𝑅 is prime if whenever 𝐴𝐵 ⊆ 𝐼 for ideals 𝐴 and 𝐵, either 𝐴 ⊆ 𝐼 or 𝐵 ⊆ 𝐼. The more familiar definition using elements rather than ideals is equivalent provided 𝑅 is commutative; see ispridl2 34755 and ispridlc 34787. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Definition | df-maxidl 34729* | Define the class of maximal ideals of a ring 𝑅. A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) | ||
Theorem | idlval 34730* | The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))}) | ||
Theorem | isidl 34731* | The predicate "is an ideal of the ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | ||
Theorem | isidlc 34732* | The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))) | ||
Theorem | idlss 34733 | An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) | ||
Theorem | idlcl 34734 | An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝑋) | ||
Theorem | idl0cl 34735 | An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝐼) | ||
Theorem | idladdcl 34736 | An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) | ||
Theorem | idllmulcl 34737 | An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼) | ||
Theorem | idlrmulcl 34738 | An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) | ||
Theorem | idlnegcl 34739 | An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) | ||
Theorem | idlsubcl 34740 | An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) | ||
Theorem | rngoidl 34741 | A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) | ||
Theorem | 0idl 34742 | The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) | ||
Theorem | 1idl 34743 | Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) | ||
Theorem | 0rngo 34744 | In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) | ||
Theorem | divrngidl 34745 | The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋}) | ||
Theorem | intidl 34746 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∩ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | inidl 34747 | The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) | ||
Theorem | unichnidl 34748* | The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | keridl 34749 | The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑆) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (◡𝐹 “ {𝑍}) ∈ (Idl‘𝑅)) | ||
Theorem | pridlval 34750* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | ispridl 34751* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
Theorem | pridlidl 34752 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) | ||
Theorem | pridlnr 34753 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ≠ 𝑋) | ||
Theorem | pridl 34754* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)) | ||
Theorem | ispridl2 34755* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 34787 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) | ||
Theorem | maxidlval 34756* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) | ||
Theorem | ismaxidl 34757* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | ||
Theorem | maxidlidl 34758 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | ||
Theorem | maxidlnr 34759 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ 𝑋) | ||
Theorem | maxidlmax 34760 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) | ||
Theorem | maxidln1 34761 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) | ||
Theorem | maxidln0 34762 | A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) | ||
Syntax | cprrng 34763 | Extend class notation with the class of prime rings. |
class PrRing | ||
Syntax | cdmn 34764 | Extend class notation with the class of domains. |
class Dmn | ||
Definition | df-prrngo 34765 | Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | ||
Definition | df-dmn 34766 | Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ Dmn = (PrRing ∩ Com2) | ||
Theorem | isprrngo 34767 | The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) | ||
Theorem | prrngorngo 34768 | A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | ||
Theorem | smprngopr 34769 | A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing) | ||
Theorem | divrngpr 34770 | A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | ||
Theorem | isdmn 34771 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | ||
Theorem | isdmn2 34772 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | ||
Theorem | dmncrng 34773 | A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | ||
Theorem | dmnrngo 34774 | A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) | ||
Theorem | flddmn 34775 | A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) | ||
Syntax | cigen 34776 | Extend class notation with the ideal generation function. |
class IdlGen | ||
Definition | df-igen 34777* | Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | ||
Theorem | igenval 34778* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) | ||
Theorem | igenss 34779 | A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) | ||
Theorem | igenidl 34780 | The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) | ||
Theorem | igenmin 34781 | The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) | ||
Theorem | igenidl2 34782 | The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) | ||
Theorem | igenval2 34783* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗)))) | ||
Theorem | prnc 34784* | A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) | ||
Theorem | isfldidl 34785 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) | ||
Theorem | isfldidl2 34786 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) | ||
Theorem | ispridlc 34787* | The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | ||
Theorem | pridlc 34788 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) | ||
Theorem | pridlc2 34789 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) | ||
Theorem | pridlc3 34790 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) | ||
Theorem | isdmn3 34791* | The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) | ||
Theorem | dmnnzd 34792 | A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) | ||
Theorem | dmncan1 34793 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶)) | ||
Theorem | dmncan2 34794 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) | ||
The results in this section are mostly meant for being used by automatic proof building programs. As a result, they might appear less useful or meaningful than others to human beings. | ||
Theorem | efald2 34795 | A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ 𝜑 → ⊥) ⇒ ⊢ 𝜑 | ||
Theorem | notbinot1 34796 | Simplification rule of negation across a biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (¬ 𝜑 ↔ 𝜓) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | bicontr 34797 | Biimplication of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((¬ 𝜑 ↔ 𝜑) ↔ ⊥) | ||
Theorem | impor 34798 | An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) | ||
Theorem | orfa 34799 | The falsum ⊥ can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) | ||
Theorem | notbinot2 34800 | Commutation rule between negation and biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |