| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-gobi | Structured version Visualization version GIF version | ||
| Description: Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-gobi | ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgob 35441 | . 2 class ↔𝑔 | |
| 2 | vu | . . 3 setvar 𝑢 | |
| 3 | vv | . . 3 setvar 𝑣 | |
| 4 | cvv 3480 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑢 |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑣 |
| 7 | cgoi 35439 | . . . . 5 class →𝑔 | |
| 8 | 5, 6, 7 | co 7431 | . . . 4 class (𝑢 →𝑔 𝑣) |
| 9 | 6, 5, 7 | co 7431 | . . . 4 class (𝑣 →𝑔 𝑢) |
| 10 | cgoa 35438 | . . . 4 class ∧𝑔 | |
| 11 | 8, 9, 10 | co 7431 | . . 3 class ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢)) |
| 12 | 2, 3, 4, 4, 11 | cmpo 7433 | . 2 class (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) |
| 13 | 1, 12 | wceq 1540 | 1 wff ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |