Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gobi Structured version   Visualization version   GIF version

Definition df-gobi 33405
Description: Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.)
Assertion
Ref Expression
df-gobi 𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢𝑔 𝑣)∧𝑔(𝑣𝑔 𝑢)))
Distinct variable group:   𝑣,𝑢

Detailed syntax breakdown of Definition df-gobi
StepHypRef Expression
1 cgob 33398 . 2 class 𝑔
2 vu . . 3 setvar 𝑢
3 vv . . 3 setvar 𝑣
4 cvv 3432 . . 3 class V
52cv 1538 . . . . 5 class 𝑢
63cv 1538 . . . . 5 class 𝑣
7 cgoi 33396 . . . . 5 class 𝑔
85, 6, 7co 7275 . . . 4 class (𝑢𝑔 𝑣)
96, 5, 7co 7275 . . . 4 class (𝑣𝑔 𝑢)
10 cgoa 33395 . . . 4 class 𝑔
118, 9, 10co 7275 . . 3 class ((𝑢𝑔 𝑣)∧𝑔(𝑣𝑔 𝑢))
122, 3, 4, 4, 11cmpo 7277 . 2 class (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢𝑔 𝑣)∧𝑔(𝑣𝑔 𝑢)))
131, 12wceq 1539 1 wff 𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢𝑔 𝑣)∧𝑔(𝑣𝑔 𝑢)))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator