Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-gobi | Structured version Visualization version GIF version |
Description: Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-gobi | ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgob 33398 | . 2 class ↔𝑔 | |
2 | vu | . . 3 setvar 𝑢 | |
3 | vv | . . 3 setvar 𝑣 | |
4 | cvv 3432 | . . 3 class V | |
5 | 2 | cv 1538 | . . . . 5 class 𝑢 |
6 | 3 | cv 1538 | . . . . 5 class 𝑣 |
7 | cgoi 33396 | . . . . 5 class →𝑔 | |
8 | 5, 6, 7 | co 7275 | . . . 4 class (𝑢 →𝑔 𝑣) |
9 | 6, 5, 7 | co 7275 | . . . 4 class (𝑣 →𝑔 𝑢) |
10 | cgoa 33395 | . . . 4 class ∧𝑔 | |
11 | 8, 9, 10 | co 7275 | . . 3 class ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢)) |
12 | 2, 3, 4, 4, 11 | cmpo 7277 | . 2 class (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) |
13 | 1, 12 | wceq 1539 | 1 wff ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |