|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-goim | Structured version Visualization version GIF version | ||
| Description: Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| df-goim | ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgoi 35440 | . 2 class →𝑔 | |
| 2 | vu | . . 3 setvar 𝑢 | |
| 3 | vv | . . 3 setvar 𝑣 | |
| 4 | cvv 3479 | . . 3 class V | |
| 5 | 2 | cv 1538 | . . . 4 class 𝑢 | 
| 6 | 3 | cv 1538 | . . . . 5 class 𝑣 | 
| 7 | 6 | cgon 35438 | . . . 4 class ¬𝑔𝑣 | 
| 8 | cgna 35340 | . . . 4 class ⊼𝑔 | |
| 9 | 5, 7, 8 | co 7432 | . . 3 class (𝑢⊼𝑔¬𝑔𝑣) | 
| 10 | 2, 3, 4, 4, 9 | cmpo 7434 | . 2 class (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | 
| 11 | 1, 10 | wceq 1539 | 1 wff →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |