HomeHome Metamath Proof Explorer
Theorem List (p. 351 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29156)
  Hilbert Space Explorer  Hilbert Space Explorer
(29157-30679)
  Users' Mathboxes  Users' Mathboxes
(30680-46368)
 

Theorem List for Metamath Proof Explorer - 35001-35100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-exlimmpbir 35001 Lemma for theorems of the vtoclg 3496 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   (𝜒 → (𝜑𝜓))    &   𝜓       (∃𝑥𝜒𝜑)
 
Theorembj-vtoclf 35002* Remove dependency on ax-ext 2710, df-clab 2717 and df-cleq 2731 (and df-sb 2073 and df-v 3425) from vtoclf 3488. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtocl 35003* Remove dependency on ax-ext 2710, df-clab 2717 and df-cleq 2731 (and df-sb 2073 and df-v 3425) from vtocl 3489. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtoclg1f1 35004* The FOL content of vtoclg1f 3495 (hence not using ax-ext 2710, df-cleq 2731, df-nfc 2889, df-v 3425). Note the weakened "major" hypothesis and the disjoint variable condition between 𝑥 and 𝐴 (needed since the nonfreeness quantifier for classes is not available without ax-ext 2710; as a byproduct, this dispenses with ax-11 2160 and ax-13 2373). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (∃𝑦 𝑦 = 𝐴𝜓)
 
Theorembj-vtoclg1f 35005* Reprove vtoclg1f 3495 from bj-vtoclg1f1 35004. This removes dependency on ax-ext 2710, df-cleq 2731 and df-v 3425. Use bj-vtoclg1fv 35006 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-vtoclg1fv 35006* Version of bj-vtoclg1f 35005 with a disjoint variable condition on 𝑥, 𝑉. This removes dependency on df-sb 2073 and df-clab 2717. Prefer its use over bj-vtoclg1f 35005 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-vtoclg 35007* A version of vtoclg 3496 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2717, see bj-vtoclg1f 35005), which requires fewer axioms (i.e., removes dependency on ax-6 1976, ax-7 2016, ax-9 2122, ax-12 2177, ax-ext 2710, df-clab 2717, df-cleq 2731, df-v 3425). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-rabbida2 35008 Version of rabbidva2 3401 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-rabeqd 35009 Deduction form of rabeq 3409. Note that contrary to rabeq 3409 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
 
Theorembj-rabeqbid 35010 Version of rabeqbidv 3411 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-rabeqbida 35011 Version of rabeqbidva 3412 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-seex 35012* Version of seex 5541 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.)
𝑥𝐵       ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
 
Theorembj-nfcf 35013* Version of df-nfc 2889 with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 2-May-2019.)
𝑦𝐴       (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
 
Theorembj-zfauscl 35014* General version of zfauscl 5218.

Remark: the comment in zfauscl 5218 is misleading: the essential use of ax-ext 2710 is the one via eleq2 2828 and not the one via vtocl 3489, since the latter can be proved without ax-ext 2710 (see bj-vtoclg 35007).

(Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)

(𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
 
20.15.5.7  Class abstractions

A few additional theorems on class abstractions and restricted class abstractions.

 
Theorembj-elabd2ALT 35015* Alternate proof of elabd2 3595 bypassing elab6g 3594 (and using sbiedvw 2102 instead of the 𝑥(𝑥 = 𝑦𝜓) idiom). (Contributed by BJ, 16-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴𝑉)    &   (𝜑𝐵 = {𝑥𝜓})    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (𝐴𝐵𝜒))
 
Theorembj-unrab 35016* Generalization of unrab 4237. Equality need not hold. (Contributed by BJ, 21-Apr-2019.)
({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
 
Theorembj-inrab 35017 Generalization of inrab 4238. (Contributed by BJ, 21-Apr-2019.)
({𝑥𝐴𝜑} ∩ {𝑥𝐵𝜓}) = {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
 
Theorembj-inrab2 35018 Shorter proof of inrab 4238. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theorembj-inrab3 35019* Generalization of dfrab3ss 4244, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.)
(𝐴 ∩ {𝑥𝐵𝜑}) = ({𝑥𝐴𝜑} ∩ 𝐵)
 
Theorembj-rabtr 35020* Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
Theorembj-rabtrALT 35021* Alternate proof of bj-rabtr 35020. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
Theorembj-rabtrAUTO 35022* Proof of bj-rabtr 35020 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
20.15.5.8  Generalized class abstractions
 
Syntaxbj-cgab 35023 Syntax for generalized class abstractions.
class {𝐴𝑥𝜑}
 
Definitiondf-bj-gab 35024* Definition of generalized class abstractions: typically, 𝑥 is a bound variable in 𝐴 and 𝜑 and {𝐴𝑥𝜑} denotes "the class of 𝐴(𝑥)'s such that 𝜑(𝑥)". (Contributed by BJ, 4-Oct-2024.)
{𝐴𝑥𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦𝜑)}
 
Theorembj-gabss 35025 Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024.)
(∀𝑥(𝐴 = 𝐵 ∧ (𝜑𝜓)) → {𝐴𝑥𝜑} ⊆ {𝐵𝑥𝜓})
 
Theorembj-gabssd 35026 Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})
 
Theorembj-gabeqd 35027 Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝐴𝑥𝜓} = {𝐵𝑥𝜒})
 
Theorembj-gabeqis 35028* Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝐴𝑥𝜑} = {𝐵𝑦𝜓}
 
Theorembj-elgab 35029 Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑𝑥𝐴)    &   (𝜑𝐴𝑉)    &   (𝜑 → (∃𝑥(𝐴 = 𝐵𝜓) ↔ 𝜒))       (𝜑 → (𝐴 ∈ {𝐵𝑥𝜓} ↔ 𝜒))
 
Theorembj-gabima 35030 Generalized class abstraction as a direct image.

TODO: improve the support lemmas elimag 5961 and fvelima 6814 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.)

(𝜑 → ∀𝑥𝜑)    &   (𝜑𝑥𝐹)    &   (𝜑 → Fun 𝐹)    &   (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)       (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))
 
20.15.5.9  Restricted nonfreeness

In this subsection, we define restricted nonfreeness (or relative nonfreeness).

 
Syntaxwrnf 35031 Syntax for restricted nonfreeness.
wff 𝑥𝐴𝜑
 
Definitiondf-bj-rnf 35032 Definition of restricted nonfreeness. Informally, the proposition 𝑥𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.)
(Ⅎ𝑥𝐴𝜑 ↔ (∃𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜑))
 
20.15.5.10  Russell's paradox

A few results around Russell's paradox. For clarity, we prove separately its FOL part (bj-ru0 35033) and then two versions (bj-ru1 35034 and bj-ru 35035). Special attention is put on minimizing axiom depencencies.

 
Theorembj-ru0 35033* The FOL part of Russell's paradox ru 3711 (see also bj-ru1 35034, bj-ru 35035). Use of elequ1 2119, bj-elequ12 34762 (instead of eleq1 2827, eleq12d 2834 as in ru 3711) permits to remove dependency on ax-10 2143, ax-11 2160, ax-12 2177, ax-ext 2710, df-sb 2073, df-clab 2717, df-cleq 2731, df-clel 2818. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
 
Theorembj-ru1 35034* A version of Russell's paradox ru 3711 (see also bj-ru 35035). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
 
Theorembj-ru 35035 Remove dependency on ax-13 2373 (and df-v 3425) from Russell's paradox ru 3711 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2820 instead of isset 3436 to avoid use of df-v 3425. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ {𝑥 ∣ ¬ 𝑥𝑥} ∈ 𝑉
 
20.15.5.11  Curry's paradox in set theory
 
Theoremcurrysetlem 35036* Lemma for currysetlem 35036, where it is used with (𝑥𝑥𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
({𝑥𝜓} ∈ 𝑉 → ({𝑥𝜓} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)))
 
Theoremcurryset 35037* Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is . See alternate exposal of basically the same proof currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 
Theoremcurrysetlem1 35038* Lemma for currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}       (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
 
Theoremcurrysetlem2 35039* Lemma for currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}       (𝑋𝑉 → (𝑋𝑋𝜑))
 
Theoremcurrysetlem3 35040* Lemma for currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}        ¬ 𝑋𝑉
 
TheoremcurrysetALT 35041* Alternate proof of curryset 35037, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.)
¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 
20.15.5.12  Some disjointness results

A few utility theorems on disjointness of classes.

 
Theorembj-n0i 35042* Inference associated with n0 4278. Shortens 2ndcdisj 22490 (2888>2878), notzfaus 5278 (264>253). (Contributed by BJ, 22-Apr-2019.)
𝐴 ≠ ∅       𝑥 𝑥𝐴
 
Theorembj-disjcsn 35043 A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 32591 and does not depend on df-ne 2944. (Contributed by BJ, 4-Apr-2019.)
(𝐴 ∩ {𝐴}) = ∅
 
Theorembj-disjsn01 35044 Disjointness of the singletons containing 0 and 1. This is a consequence of bj-disjcsn 35043 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
({∅} ∩ {1o}) = ∅
 
Theorembj-0nel1 35045 The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
∅ ∉ {1o}
 
Theorembj-1nel0 35046 1o does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.)
1o ∉ {∅}
 
20.15.5.13  Complements on direct products

A few utility theorems on direct products.

 
Theorembj-xpimasn 35047 The image of a singleton, general case. [Change and relabel xpimasn 6076 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
 
Theorembj-xpima1sn 35048 The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6076 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
 
Theorembj-xpima1snALT 35049 Alternate proof of bj-xpima1sn 35048. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
 
Theorembj-xpima2sn 35050 The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6076.] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.)
(𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
 
Theorembj-xpnzex 35051 If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7738 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
(𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
 
Theorembj-xpexg2 35052 Curried (exported) form of xpexg 7575. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))
 
Theorembj-xpnzexb 35053 If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.)
(𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))
 
Theorembj-cleq 35054* Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.)
(𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
 
20.15.5.14  "Singletonization" and tagging

This subsection introduces the "singletonization" and the "tagging" of a class. The singletonization of a class is the class of singletons of elements of that class. It is useful since all nonsingletons are disjoint from it, so one can easily adjoin to it disjoint elements, which is what the tagging does: it adjoins the empty set. This can be used for instance to define the one-point compactification of a topological space. It will be used in the next section to define tuples which work for proper classes.

 
Theorembj-snsetex 35055* The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5203. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
 
Theorembj-clex 35056* Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
 
Syntaxbj-csngl 35057 Syntax for singletonization. (Contributed by BJ, 6-Oct-2018.)
class sngl 𝐴
 
Definitiondf-bj-sngl 35058* Definition of "singletonization". The class sngl 𝐴 is isomorphic to 𝐴 and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018.)
sngl 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}}
 
Theorembj-sngleq 35059 Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.)
(𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
 
Theorembj-elsngl 35060* Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
 
Theorembj-snglc 35061 Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
 
Theorembj-snglss 35062 The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
sngl 𝐴 ⊆ 𝒫 𝐴
 
Theorembj-0nelsngl 35063 The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8244). (Contributed by BJ, 6-Oct-2018.)
∅ ∉ sngl 𝐴
 
Theorembj-snglinv 35064* Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.)
𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
 
Theorembj-snglex 35065 A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
 
Syntaxbj-ctag 35066 Syntax for the tagged copy of a class. (Contributed by BJ, 6-Oct-2018.)
class tag 𝐴
 
Definitiondf-bj-tag 35067 Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.)
tag 𝐴 = (sngl 𝐴 ∪ {∅})
 
Theorembj-tageq 35068 Substitution property for tag. (Contributed by BJ, 6-Oct-2018.)
(𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)
 
Theorembj-eltag 35069* Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
 
Theorembj-0eltag 35070 The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.)
∅ ∈ tag 𝐴
 
Theorembj-tagn0 35071 The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
tag 𝐴 ≠ ∅
 
Theorembj-tagss 35072 The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
tag 𝐴 ⊆ 𝒫 𝐴
 
Theorembj-snglsstag 35073 The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
sngl 𝐴 ⊆ tag 𝐴
 
Theorembj-sngltagi 35074 The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ sngl 𝐵𝐴 ∈ tag 𝐵)
 
Theorembj-sngltag 35075 The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
 
Theorembj-tagci 35076 Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝐵 → {𝐴} ∈ tag 𝐵)
 
Theorembj-tagcg 35077 Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))
 
Theorembj-taginv 35078* Inverse of tagging. (Contributed by BJ, 6-Oct-2018.)
𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴}
 
Theorembj-tagex 35079 A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ V ↔ tag 𝐴 ∈ V)
 
Theorembj-xtageq 35080 The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.)
(𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵))
 
Theorembj-xtagex 35081 The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → (𝐵𝑊 → (𝐴 × tag 𝐵) ∈ V))
 
20.15.5.15  Tuples of classes

This subsection gives a definition of an ordered pair, or couple (2-tuple), that "works" for proper classes, as evidenced by Theorems bj-2uplth 35113 and bj-2uplex 35114, and more importantly, bj-pr21val 35105 and bj-pr22val 35111. In particular, one can define well-behaved tuples of classes. Classes in ZF(C) are only virtual, and in particular they cannot be quantified over. Theorem bj-2uplex 35114 has advantages: in view of df-br 5071, several sethood antecedents could be removed from existing theorems. For instance, relsnopg 5701 (resp. relsnop 5703) would hold without antecedents (resp. hypotheses) thanks to relsnb 5700). Also, the antecedent Rel 𝑅 could be removed from brrelex12 5629 and related theorems brrelex*, and, as a consequence, of multiple later theorems. Similarly, df-struct 16751 could be simplified by removing the exception currently made for the empty set.

The projections are denoted by pr1 and pr2 and the couple with projections (or coordinates) 𝐴 and 𝐵 is denoted by 𝐴, 𝐵.

Note that this definition uses the Kuratowski definition (df-op 4565) as a preliminary definition, and then "redefines" a couple. It could also use the "short" version of the Kuratowski pair (see opthreg 9281) without needing the axiom of regularity; it could even bypass this definition by "inlining" it.

This definition is due to Anthony Morse and is expounded (with idiosyncratic notation) in

Anthony P. Morse, A Theory of Sets, Academic Press, 1965 (second edition 1986).

Note that this extends in a natural way to tuples.

A variation of this definition is justified in opthprc 5641, but here we use "tagged versions" of the factors (see df-bj-tag 35067) so that an m-tuple can equal an n-tuple only when m = n (and the projections are the same).

A comparison of the different definitions of tuples (strangely not mentioning Morse's), is given in

Dominic McCarty and Dana Scott, Reconsidering ordered pairs, Bull. Symbolic Logic, Volume 14, Issue 3 (Sept. 2008), 379--397.

where a recursive definition of tuples is given that avoids the 2-step definition of tuples and that can be adapted to various set theories.

Finally, another survey is

Akihiro Kanamori, The empty set, the singleton, and the ordered pair, Bull. Symbolic Logic, Volume 9, Number 3 (Sept. 2003), 273--298. (available at http://math.bu.edu/people/aki/8.pdf 35067)

 
Syntaxbj-cproj 35082 Syntax for the class projection. (Contributed by BJ, 6-Apr-2019.)
class (𝐴 Proj 𝐵)
 
Definitiondf-bj-proj 35083* Definition of the class projection corresponding to tagged tuples. The expression (𝐴 Proj 𝐵) denotes the projection on the A^th component. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.)
(𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
 
Theorembj-projeq 35084 Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
(𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))
 
Theorembj-projeq2 35085 Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
(𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))
 
Theorembj-projun 35086 The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.)
(𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))
 
Theorembj-projex 35087 Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.)
(𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)
 
Theorembj-projval 35088 Value of the class projection. (Contributed by BJ, 6-Apr-2019.)
(𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅))
 
Syntaxbj-c1upl 35089 Syntax for Morse monuple. (Contributed by BJ, 6-Apr-2019.)
class 𝐴
 
Definitiondf-bj-1upl 35090 Definition of the Morse monuple (1-tuple). This is not useful per se, but is used as a step towards the definition of couples (2-tuples, or ordered pairs). The reason for "tagging" the set is so that an m-tuple and an n-tuple be equal only when m = n. Note that with this definition, the 0-tuple is the empty set. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq 35104, bj-2uplth 35113, bj-2uplex 35114, and the properties of the projections (see df-bj-pr1 35093 and df-bj-pr2 35107). (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.)
𝐴⦆ = ({∅} × tag 𝐴)
 
Theorembj-1upleq 35091 Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.)
(𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
 
Syntaxbj-cpr1 35092 Syntax for the first class tuple projection. (Contributed by BJ, 6-Apr-2019.)
class pr1 𝐴
 
Definitiondf-bj-pr1 35093 Definition of the first projection of a class tuple. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-pr1eq 35094, bj-pr11val 35097, bj-pr21val 35105, bj-pr1ex 35098. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.)
pr1 𝐴 = (∅ Proj 𝐴)
 
Theorembj-pr1eq 35094 Substitution property for pr1. (Contributed by BJ, 6-Apr-2019.)
(𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵)
 
Theorembj-pr1un 35095 The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
pr1 (𝐴𝐵) = (pr1 𝐴 ∪ pr1 𝐵)
 
Theorembj-pr1val 35096 Value of the first projection. (Contributed by BJ, 6-Apr-2019.)
pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅)
 
Theorembj-pr11val 35097 Value of the first projection of a monuple. (Contributed by BJ, 6-Apr-2019.)
pr1𝐴⦆ = 𝐴
 
Theorembj-pr1ex 35098 Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → pr1 𝐴 ∈ V)
 
Theorembj-1uplth 35099 The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.)
(⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)
 
Theorembj-1uplex 35100 A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.)
(⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46368
  Copyright terms: Public domain < Previous  Next >