Home | Metamath
Proof Explorer Theorem List (p. 351 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29156) |
Hilbert Space Explorer
(29157-30679) |
Users' Mathboxes
(30680-46368) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bj-exlimmpbir 35001 | Lemma for theorems of the vtoclg 3496 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ (∃𝑥𝜒 → 𝜑) | ||
Theorem | bj-vtoclf 35002* | Remove dependency on ax-ext 2710, df-clab 2717 and df-cleq 2731 (and df-sb 2073 and df-v 3425) from vtoclf 3488. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ 𝑉 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | bj-vtocl 35003* | Remove dependency on ax-ext 2710, df-clab 2717 and df-cleq 2731 (and df-sb 2073 and df-v 3425) from vtocl 3489. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝑉 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | bj-vtoclg1f1 35004* | The FOL content of vtoclg1f 3495 (hence not using ax-ext 2710, df-cleq 2731, df-nfc 2889, df-v 3425). Note the weakened "major" hypothesis and the disjoint variable condition between 𝑥 and 𝐴 (needed since the nonfreeness quantifier for classes is not available without ax-ext 2710; as a byproduct, this dispenses with ax-11 2160 and ax-13 2373). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (∃𝑦 𝑦 = 𝐴 → 𝜓) | ||
Theorem | bj-vtoclg1f 35005* | Reprove vtoclg1f 3495 from bj-vtoclg1f1 35004. This removes dependency on ax-ext 2710, df-cleq 2731 and df-v 3425. Use bj-vtoclg1fv 35006 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | bj-vtoclg1fv 35006* | Version of bj-vtoclg1f 35005 with a disjoint variable condition on 𝑥, 𝑉. This removes dependency on df-sb 2073 and df-clab 2717. Prefer its use over bj-vtoclg1f 35005 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | bj-vtoclg 35007* | A version of vtoclg 3496 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2717, see bj-vtoclg1f 35005), which requires fewer axioms (i.e., removes dependency on ax-6 1976, ax-7 2016, ax-9 2122, ax-12 2177, ax-ext 2710, df-clab 2717, df-cleq 2731, df-v 3425). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
Theorem | bj-rabbida2 35008 | Version of rabbidva2 3401 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | bj-rabeqd 35009 | Deduction form of rabeq 3409. Note that contrary to rabeq 3409 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | bj-rabeqbid 35010 | Version of rabeqbidv 3411 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | bj-rabeqbida 35011 | Version of rabeqbidva 3412 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | bj-seex 35012* | Version of seex 5541 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) | ||
Theorem | bj-nfcf 35013* | Version of df-nfc 2889 with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 2-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | bj-zfauscl 35014* |
General version of zfauscl 5218.
Remark: the comment in zfauscl 5218 is misleading: the essential use of ax-ext 2710 is the one via eleq2 2828 and not the one via vtocl 3489, since the latter can be proved without ax-ext 2710 (see bj-vtoclg 35007). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
A few additional theorems on class abstractions and restricted class abstractions. | ||
Theorem | bj-elabd2ALT 35015* | Alternate proof of elabd2 3595 bypassing elab6g 3594 (and using sbiedvw 2102 instead of the ∀𝑥(𝑥 = 𝑦 → 𝜓) idiom). (Contributed by BJ, 16-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = {𝑥 ∣ 𝜓}) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝜒)) | ||
Theorem | bj-unrab 35016* | Generalization of unrab 4237. Equality need not hold. (Contributed by BJ, 21-Apr-2019.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} | ||
Theorem | bj-inrab 35017 | Generalization of inrab 4238. (Contributed by BJ, 21-Apr-2019.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐵 ∣ 𝜓}) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | bj-inrab2 35018 | Shorter proof of inrab 4238. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | bj-inrab3 35019* | Generalization of dfrab3ss 4244, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.) |
⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) | ||
Theorem | bj-rabtr 35020* | Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.) |
⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
Theorem | bj-rabtrALT 35021* | Alternate proof of bj-rabtr 35020. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
Theorem | bj-rabtrAUTO 35022* | Proof of bj-rabtr 35020 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
Syntax | bj-cgab 35023 | Syntax for generalized class abstractions. |
class {𝐴 ∣ 𝑥 ∣ 𝜑} | ||
Definition | df-bj-gab 35024* | Definition of generalized class abstractions: typically, 𝑥 is a bound variable in 𝐴 and 𝜑 and {𝐴 ∣ 𝑥 ∣ 𝜑} denotes "the class of 𝐴(𝑥)'s such that 𝜑(𝑥)". (Contributed by BJ, 4-Oct-2024.) |
⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} | ||
Theorem | bj-gabss 35025 | Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024.) |
⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜑 → 𝜓)) → {𝐴 ∣ 𝑥 ∣ 𝜑} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜓}) | ||
Theorem | bj-gabssd 35026 | Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) | ||
Theorem | bj-gabeqd 35027 | Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} = {𝐵 ∣ 𝑥 ∣ 𝜒}) | ||
Theorem | bj-gabeqis 35028* | Equality of generalized class abstractions, with implicit substitution. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝐵 ∣ 𝑦 ∣ 𝜓} | ||
Theorem | bj-elgab 35029 | Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑥(𝐴 = 𝐵 ∧ 𝜓) ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐴 ∈ {𝐵 ∣ 𝑥 ∣ 𝜓} ↔ 𝜒)) | ||
Theorem | bj-gabima 35030 |
Generalized class abstraction as a direct image.
TODO: improve the support lemmas elimag 5961 and fvelima 6814 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ𝑥𝐹) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ dom 𝐹) ⇒ ⊢ (𝜑 → {(𝐹‘𝑥) ∣ 𝑥 ∣ 𝜓} = (𝐹 “ {𝑥 ∣ 𝜓})) | ||
In this subsection, we define restricted nonfreeness (or relative nonfreeness). | ||
Syntax | wrnf 35031 | Syntax for restricted nonfreeness. |
wff Ⅎ𝑥 ∈ 𝐴𝜑 | ||
Definition | df-bj-rnf 35032 | Definition of restricted nonfreeness. Informally, the proposition Ⅎ𝑥 ∈ 𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.) |
⊢ (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) | ||
A few results around Russell's paradox. For clarity, we prove separately its FOL part (bj-ru0 35033) and then two versions (bj-ru1 35034 and bj-ru 35035). Special attention is put on minimizing axiom depencencies. | ||
Theorem | bj-ru0 35033* | The FOL part of Russell's paradox ru 3711 (see also bj-ru1 35034, bj-ru 35035). Use of elequ1 2119, bj-elequ12 34762 (instead of eleq1 2827, eleq12d 2834 as in ru 3711) permits to remove dependency on ax-10 2143, ax-11 2160, ax-12 2177, ax-ext 2710, df-sb 2073, df-clab 2717, df-cleq 2731, df-clel 2818. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) | ||
Theorem | bj-ru1 35034* | A version of Russell's paradox ru 3711 (see also bj-ru 35035). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} | ||
Theorem | bj-ru 35035 | Remove dependency on ax-13 2373 (and df-v 3425) from Russell's paradox ru 3711 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2820 instead of isset 3436 to avoid use of df-v 3425. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 | ||
Theorem | currysetlem 35036* | Lemma for currysetlem 35036, where it is used with (𝑥 ∈ 𝑥 → 𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) | ||
Theorem | curryset 35037* | Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is ⊥. See alternate exposal of basically the same proof currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 | ||
Theorem | currysetlem1 35038* | Lemma for currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) | ||
Theorem | currysetlem2 35039* | Lemma for currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 → 𝜑)) | ||
Theorem | currysetlem3 35040* | Lemma for currysetALT 35041. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ⇒ ⊢ ¬ 𝑋 ∈ 𝑉 | ||
Theorem | currysetALT 35041* | Alternate proof of curryset 35037, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ∈ 𝑉 | ||
A few utility theorems on disjointness of classes. | ||
Theorem | bj-n0i 35042* | Inference associated with n0 4278. Shortens 2ndcdisj 22490 (2888>2878), notzfaus 5278 (264>253). (Contributed by BJ, 22-Apr-2019.) |
⊢ 𝐴 ≠ ∅ ⇒ ⊢ ∃𝑥 𝑥 ∈ 𝐴 | ||
Theorem | bj-disjcsn 35043 | A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 32591 and does not depend on df-ne 2944. (Contributed by BJ, 4-Apr-2019.) |
⊢ (𝐴 ∩ {𝐴}) = ∅ | ||
Theorem | bj-disjsn01 35044 | Disjointness of the singletons containing 0 and 1. This is a consequence of bj-disjcsn 35043 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.) |
⊢ ({∅} ∩ {1o}) = ∅ | ||
Theorem | bj-0nel1 35045 | The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
⊢ ∅ ∉ {1o} | ||
Theorem | bj-1nel0 35046 | 1o does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.) |
⊢ 1o ∉ {∅} | ||
A few utility theorems on direct products. | ||
Theorem | bj-xpimasn 35047 | The image of a singleton, general case. [Change and relabel xpimasn 6076 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | ||
Theorem | bj-xpima1sn 35048 | The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6076 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) | ||
Theorem | bj-xpima1snALT 35049 | Alternate proof of bj-xpima1sn 35048. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅) | ||
Theorem | bj-xpima2sn 35050 | The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6076.] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) |
⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | ||
Theorem | bj-xpnzex 35051 | If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7738 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) | ||
Theorem | bj-xpexg2 35052 | Curried (exported) form of xpexg 7575. (Contributed by BJ, 2-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × 𝐵) ∈ V)) | ||
Theorem | bj-xpnzexb 35053 | If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.) |
⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) | ||
Theorem | bj-cleq 35054* | Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.) |
⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) | ||
This subsection introduces the "singletonization" and the "tagging" of a class. The singletonization of a class is the class of singletons of elements of that class. It is useful since all nonsingletons are disjoint from it, so one can easily adjoin to it disjoint elements, which is what the tagging does: it adjoins the empty set. This can be used for instance to define the one-point compactification of a topological space. It will be used in the next section to define tuples which work for proper classes. | ||
Theorem | bj-snsetex 35055* | The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5203. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V) | ||
Theorem | bj-clex 35056* | Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐵)} ∈ V) | ||
Syntax | bj-csngl 35057 | Syntax for singletonization. (Contributed by BJ, 6-Oct-2018.) |
class sngl 𝐴 | ||
Definition | df-bj-sngl 35058* | Definition of "singletonization". The class sngl 𝐴 is isomorphic to 𝐴 and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018.) |
⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} | ||
Theorem | bj-sngleq 35059 | Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) | ||
Theorem | bj-elsngl 35060* | Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) | ||
Theorem | bj-snglc 35061 | Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | ||
Theorem | bj-snglss 35062 | The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | ||
Theorem | bj-0nelsngl 35063 | The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8244). (Contributed by BJ, 6-Oct-2018.) |
⊢ ∅ ∉ sngl 𝐴 | ||
Theorem | bj-snglinv 35064* | Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.) |
⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | ||
Theorem | bj-snglex 35065 | A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | ||
Syntax | bj-ctag 35066 | Syntax for the tagged copy of a class. (Contributed by BJ, 6-Oct-2018.) |
class tag 𝐴 | ||
Definition | df-bj-tag 35067 | Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.) |
⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | ||
Theorem | bj-tageq 35068 | Substitution property for tag. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) | ||
Theorem | bj-eltag 35069* | Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) | ||
Theorem | bj-0eltag 35070 | The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.) |
⊢ ∅ ∈ tag 𝐴 | ||
Theorem | bj-tagn0 35071 | The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
⊢ tag 𝐴 ≠ ∅ | ||
Theorem | bj-tagss 35072 | The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
⊢ tag 𝐴 ⊆ 𝒫 𝐴 | ||
Theorem | bj-snglsstag 35073 | The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
⊢ sngl 𝐴 ⊆ tag 𝐴 | ||
Theorem | bj-sngltagi 35074 | The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ sngl 𝐵 → 𝐴 ∈ tag 𝐵) | ||
Theorem | bj-sngltag 35075 | The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | ||
Theorem | bj-tagci 35076 | Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) | ||
Theorem | bj-tagcg 35077 | Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | ||
Theorem | bj-taginv 35078* | Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} | ||
Theorem | bj-tagex 35079 | A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) | ||
Theorem | bj-xtageq 35080 | The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) | ||
Theorem | bj-xtagex 35081 | The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) | ||
This subsection gives a definition of an ordered pair, or couple (2-tuple), that "works" for proper classes, as evidenced by Theorems bj-2uplth 35113 and bj-2uplex 35114, and more importantly, bj-pr21val 35105 and bj-pr22val 35111. In particular, one can define well-behaved tuples of classes. Classes in ZF(C) are only virtual, and in particular they cannot be quantified over. Theorem bj-2uplex 35114 has advantages: in view of df-br 5071, several sethood antecedents could be removed from existing theorems. For instance, relsnopg 5701 (resp. relsnop 5703) would hold without antecedents (resp. hypotheses) thanks to relsnb 5700). Also, the antecedent Rel 𝑅 could be removed from brrelex12 5629 and related theorems brrelex*, and, as a consequence, of multiple later theorems. Similarly, df-struct 16751 could be simplified by removing the exception currently made for the empty set. The projections are denoted by pr1 and pr2 and the couple with projections (or coordinates) 𝐴 and 𝐵 is denoted by ⦅𝐴, 𝐵⦆. Note that this definition uses the Kuratowski definition (df-op 4565) as a preliminary definition, and then "redefines" a couple. It could also use the "short" version of the Kuratowski pair (see opthreg 9281) without needing the axiom of regularity; it could even bypass this definition by "inlining" it. This definition is due to Anthony Morse and is expounded (with idiosyncratic notation) in Anthony P. Morse, A Theory of Sets, Academic Press, 1965 (second edition 1986). Note that this extends in a natural way to tuples. A variation of this definition is justified in opthprc 5641, but here we use "tagged versions" of the factors (see df-bj-tag 35067) so that an m-tuple can equal an n-tuple only when m = n (and the projections are the same). A comparison of the different definitions of tuples (strangely not mentioning Morse's), is given in Dominic McCarty and Dana Scott, Reconsidering ordered pairs, Bull. Symbolic Logic, Volume 14, Issue 3 (Sept. 2008), 379--397. where a recursive definition of tuples is given that avoids the 2-step definition of tuples and that can be adapted to various set theories. Finally, another survey is Akihiro Kanamori, The empty set, the singleton, and the ordered pair, Bull. Symbolic Logic, Volume 9, Number 3 (Sept. 2003), 273--298. (available at http://math.bu.edu/people/aki/8.pdf 35067) | ||
Syntax | bj-cproj 35082 | Syntax for the class projection. (Contributed by BJ, 6-Apr-2019.) |
class (𝐴 Proj 𝐵) | ||
Definition | df-bj-proj 35083* | Definition of the class projection corresponding to tagged tuples. The expression (𝐴 Proj 𝐵) denotes the projection on the A^th component. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | ||
Theorem | bj-projeq 35084 | Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) | ||
Theorem | bj-projeq2 35085 | Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) | ||
Theorem | bj-projun 35086 | The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) | ||
Theorem | bj-projex 35087 | Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 Proj 𝐵) ∈ V) | ||
Theorem | bj-projval 35088 | Value of the class projection. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅)) | ||
Syntax | bj-c1upl 35089 | Syntax for Morse monuple. (Contributed by BJ, 6-Apr-2019.) |
class ⦅𝐴⦆ | ||
Definition | df-bj-1upl 35090 | Definition of the Morse monuple (1-tuple). This is not useful per se, but is used as a step towards the definition of couples (2-tuples, or ordered pairs). The reason for "tagging" the set is so that an m-tuple and an n-tuple be equal only when m = n. Note that with this definition, the 0-tuple is the empty set. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq 35104, bj-2uplth 35113, bj-2uplex 35114, and the properties of the projections (see df-bj-pr1 35093 and df-bj-pr2 35107). (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | ||
Theorem | bj-1upleq 35091 | Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | ||
Syntax | bj-cpr1 35092 | Syntax for the first class tuple projection. (Contributed by BJ, 6-Apr-2019.) |
class pr1 𝐴 | ||
Definition | df-bj-pr1 35093 | Definition of the first projection of a class tuple. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-pr1eq 35094, bj-pr11val 35097, bj-pr21val 35105, bj-pr1ex 35098. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
⊢ pr1 𝐴 = (∅ Proj 𝐴) | ||
Theorem | bj-pr1eq 35094 | Substitution property for pr1. (Contributed by BJ, 6-Apr-2019.) |
⊢ (𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵) | ||
Theorem | bj-pr1un 35095 | The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
⊢ pr1 (𝐴 ∪ 𝐵) = (pr1 𝐴 ∪ pr1 𝐵) | ||
Theorem | bj-pr1val 35096 | Value of the first projection. (Contributed by BJ, 6-Apr-2019.) |
⊢ pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅) | ||
Theorem | bj-pr11val 35097 | Value of the first projection of a monuple. (Contributed by BJ, 6-Apr-2019.) |
⊢ pr1 ⦅𝐴⦆ = 𝐴 | ||
Theorem | bj-pr1ex 35098 | Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.) |
⊢ (𝐴 ∈ 𝑉 → pr1 𝐴 ∈ V) | ||
Theorem | bj-1uplth 35099 | The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) | ||
Theorem | bj-1uplex 35100 | A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |