Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-goor | Structured version Visualization version GIF version |
Description: Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-goor | ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgoo 33110 | . 2 class ∨𝑔 | |
2 | vu | . . 3 setvar 𝑢 | |
3 | vv | . . 3 setvar 𝑣 | |
4 | cvv 3408 | . . 3 class V | |
5 | 2 | cv 1542 | . . . . 5 class 𝑢 |
6 | 5 | cgon 33107 | . . . 4 class ¬𝑔𝑢 |
7 | 3 | cv 1542 | . . . 4 class 𝑣 |
8 | cgoi 33109 | . . . 4 class →𝑔 | |
9 | 6, 7, 8 | co 7213 | . . 3 class (¬𝑔𝑢 →𝑔 𝑣) |
10 | 2, 3, 4, 4, 9 | cmpo 7215 | . 2 class (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) |
11 | 1, 10 | wceq 1543 | 1 wff ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |