Detailed syntax breakdown of Definition df-gpg
| Step | Hyp | Ref
| Expression |
| 1 | | cgpg 47972 |
. 2
class
gPetersenGr |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vk |
. . 3
setvar 𝑘 |
| 4 | | cn 12248 |
. . 3
class
ℕ |
| 5 | | c1 11138 |
. . . 4
class
1 |
| 6 | 2 | cv 1538 |
. . . . . 6
class 𝑛 |
| 7 | | c2 12303 |
. . . . . 6
class
2 |
| 8 | | cdiv 11902 |
. . . . . 6
class
/ |
| 9 | 6, 7, 8 | co 7413 |
. . . . 5
class (𝑛 / 2) |
| 10 | | cceil 13813 |
. . . . 5
class
⌈ |
| 11 | 9, 10 | cfv 6541 |
. . . 4
class
(⌈‘(𝑛 /
2)) |
| 12 | | cfzo 13676 |
. . . 4
class
..^ |
| 13 | 5, 11, 12 | co 7413 |
. . 3
class
(1..^(⌈‘(𝑛 / 2))) |
| 14 | | cnx 17213 |
. . . . . 6
class
ndx |
| 15 | | cbs 17230 |
. . . . . 6
class
Base |
| 16 | 14, 15 | cfv 6541 |
. . . . 5
class
(Base‘ndx) |
| 17 | | cc0 11137 |
. . . . . . 7
class
0 |
| 18 | 17, 5 | cpr 4608 |
. . . . . 6
class {0,
1} |
| 19 | 17, 6, 12 | co 7413 |
. . . . . 6
class
(0..^𝑛) |
| 20 | 18, 19 | cxp 5663 |
. . . . 5
class ({0, 1}
× (0..^𝑛)) |
| 21 | 16, 20 | cop 4612 |
. . . 4
class
〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉 |
| 22 | | cedgf 28934 |
. . . . . 6
class
.ef |
| 23 | 14, 22 | cfv 6541 |
. . . . 5
class
(.ef‘ndx) |
| 24 | | cid 5557 |
. . . . . 6
class
I |
| 25 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
| 26 | 25 | cv 1538 |
. . . . . . . . . 10
class 𝑒 |
| 27 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 28 | 27 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
| 29 | 17, 28 | cop 4612 |
. . . . . . . . . . 11
class 〈0,
𝑥〉 |
| 30 | | caddc 11140 |
. . . . . . . . . . . . . 14
class
+ |
| 31 | 28, 5, 30 | co 7413 |
. . . . . . . . . . . . 13
class (𝑥 + 1) |
| 32 | | cmo 13891 |
. . . . . . . . . . . . 13
class
mod |
| 33 | 31, 6, 32 | co 7413 |
. . . . . . . . . . . 12
class ((𝑥 + 1) mod 𝑛) |
| 34 | 17, 33 | cop 4612 |
. . . . . . . . . . 11
class 〈0,
((𝑥 + 1) mod 𝑛)〉 |
| 35 | 29, 34 | cpr 4608 |
. . . . . . . . . 10
class {〈0,
𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} |
| 36 | 26, 35 | wceq 1539 |
. . . . . . . . 9
wff 𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} |
| 37 | 5, 28 | cop 4612 |
. . . . . . . . . . 11
class 〈1,
𝑥〉 |
| 38 | 29, 37 | cpr 4608 |
. . . . . . . . . 10
class {〈0,
𝑥〉, 〈1, 𝑥〉} |
| 39 | 26, 38 | wceq 1539 |
. . . . . . . . 9
wff 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} |
| 40 | 3 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑘 |
| 41 | 28, 40, 30 | co 7413 |
. . . . . . . . . . . . 13
class (𝑥 + 𝑘) |
| 42 | 41, 6, 32 | co 7413 |
. . . . . . . . . . . 12
class ((𝑥 + 𝑘) mod 𝑛) |
| 43 | 5, 42 | cop 4612 |
. . . . . . . . . . 11
class 〈1,
((𝑥 + 𝑘) mod 𝑛)〉 |
| 44 | 37, 43 | cpr 4608 |
. . . . . . . . . 10
class {〈1,
𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉} |
| 45 | 26, 44 | wceq 1539 |
. . . . . . . . 9
wff 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉} |
| 46 | 36, 39, 45 | w3o 1085 |
. . . . . . . 8
wff (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉}) |
| 47 | 46, 27, 19 | wrex 3059 |
. . . . . . 7
wff
∃𝑥 ∈
(0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉}) |
| 48 | 20 | cpw 4580 |
. . . . . . 7
class 𝒫
({0, 1} × (0..^𝑛)) |
| 49 | 47, 25, 48 | crab 3419 |
. . . . . 6
class {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})} |
| 50 | 24, 49 | cres 5667 |
. . . . 5
class ( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑛))
∣ ∃𝑥 ∈
(0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})}) |
| 51 | 23, 50 | cop 4612 |
. . . 4
class
〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉 |
| 52 | 21, 51 | cpr 4608 |
. . 3
class
{〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉} |
| 53 | 2, 3, 4, 13, 52 | cmpo 7415 |
. 2
class (𝑛 ∈ ℕ, 𝑘 ∈
(1..^(⌈‘(𝑛 /
2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) |
| 54 | 1, 53 | wceq 1539 |
1
wff
gPetersenGr = (𝑛 ∈
ℕ, 𝑘 ∈
(1..^(⌈‘(𝑛 /
2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) |