Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-gpg Structured version   Visualization version   GIF version

Definition df-gpg 47890
Description: Definition of generalized Petersen graphs according to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph: "In Watkins' notation, 𝐺(𝑛, 𝑘) is a graph with vertex set { u0, u1, ... , un-1, v0, v1, ... , vn-1 } and edge set { ui ui+1 , ui vi , vi vi+k | 0 ≤ 𝑖 ≤ (𝑛 − 1) } where subscripts are to be read modulo n and where 𝑘 < (𝑛 / 2). Some authors use the notation GPG(n,k)."

Instead of 𝑛 ∈ ℕ, we could restrict the first argument to 𝑛 ∈ (ℤ‘3) (i.e., 3 ≤ 𝑛), because for 𝑛 ≤ 2, the definition is not meaningful (since then (⌈‘(𝑛 / 2)) ≤ 1 and therefore (1..^(⌈‘(𝑛 / 2))) = ∅, so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025.)

Assertion
Ref Expression
df-gpg gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
Distinct variable group:   𝑒,𝑘,𝑛,𝑥

Detailed syntax breakdown of Definition df-gpg
StepHypRef Expression
1 cgpg 47889 . 2 class gPetersenGr
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn 12298 . . 3 class
5 c1 11188 . . . 4 class 1
62cv 1536 . . . . . 6 class 𝑛
7 c2 12353 . . . . . 6 class 2
8 cdiv 11952 . . . . . 6 class /
96, 7, 8co 7451 . . . . 5 class (𝑛 / 2)
10 cceil 13858 . . . . 5 class
119, 10cfv 6576 . . . 4 class (⌈‘(𝑛 / 2))
12 cfzo 13722 . . . 4 class ..^
135, 11, 12co 7451 . . 3 class (1..^(⌈‘(𝑛 / 2)))
14 cnx 17260 . . . . . 6 class ndx
15 cbs 17278 . . . . . 6 class Base
1614, 15cfv 6576 . . . . 5 class (Base‘ndx)
17 cc0 11187 . . . . . . 7 class 0
1817, 5cpr 4650 . . . . . 6 class {0, 1}
1917, 6, 12co 7451 . . . . . 6 class (0..^𝑛)
2018, 19cxp 5699 . . . . 5 class ({0, 1} × (0..^𝑛))
2116, 20cop 4654 . . . 4 class ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩
22 cedgf 29041 . . . . . 6 class .ef
2314, 22cfv 6576 . . . . 5 class (.ef‘ndx)
24 cid 5593 . . . . . 6 class I
25 ve . . . . . . . . . . 11 setvar 𝑒
2625cv 1536 . . . . . . . . . 10 class 𝑒
27 vx . . . . . . . . . . . . 13 setvar 𝑥
2827cv 1536 . . . . . . . . . . . 12 class 𝑥
2917, 28cop 4654 . . . . . . . . . . 11 class ⟨0, 𝑥
30 caddc 11190 . . . . . . . . . . . . . 14 class +
3128, 5, 30co 7451 . . . . . . . . . . . . 13 class (𝑥 + 1)
32 cmo 13936 . . . . . . . . . . . . 13 class mod
3331, 6, 32co 7451 . . . . . . . . . . . 12 class ((𝑥 + 1) mod 𝑛)
3417, 33cop 4654 . . . . . . . . . . 11 class ⟨0, ((𝑥 + 1) mod 𝑛)⟩
3529, 34cpr 4650 . . . . . . . . . 10 class {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩}
3626, 35wceq 1537 . . . . . . . . 9 wff 𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩}
375, 28cop 4654 . . . . . . . . . . 11 class ⟨1, 𝑥
3829, 37cpr 4650 . . . . . . . . . 10 class {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}
3926, 38wceq 1537 . . . . . . . . 9 wff 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}
403cv 1536 . . . . . . . . . . . . . 14 class 𝑘
4128, 40, 30co 7451 . . . . . . . . . . . . 13 class (𝑥 + 𝑘)
4241, 6, 32co 7451 . . . . . . . . . . . 12 class ((𝑥 + 𝑘) mod 𝑛)
435, 42cop 4654 . . . . . . . . . . 11 class ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩
4437, 43cpr 4650 . . . . . . . . . 10 class {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}
4526, 44wceq 1537 . . . . . . . . 9 wff 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}
4636, 39, 45w3o 1086 . . . . . . . 8 wff (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})
4746, 27, 19wrex 3076 . . . . . . 7 wff 𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})
4820cpw 4622 . . . . . . 7 class 𝒫 ({0, 1} × (0..^𝑛))
4947, 25, 48crab 3443 . . . . . 6 class {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})}
5024, 49cres 5703 . . . . 5 class ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})
5123, 50cop 4654 . . . 4 class ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩
5221, 51cpr 4650 . . 3 class {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩}
532, 3, 4, 13, 52cmpo 7453 . 2 class (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
541, 53wceq 1537 1 wff gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
Colors of variables: wff setvar class
This definition is referenced by:  gpgov  47891
  Copyright terms: Public domain W3C validator