Detailed syntax breakdown of Definition df-gpg
Step | Hyp | Ref
| Expression |
1 | | cgpg 47889 |
. 2
class
gPetersenGr |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | | cn 12298 |
. . 3
class
ℕ |
5 | | c1 11188 |
. . . 4
class
1 |
6 | 2 | cv 1536 |
. . . . . 6
class 𝑛 |
7 | | c2 12353 |
. . . . . 6
class
2 |
8 | | cdiv 11952 |
. . . . . 6
class
/ |
9 | 6, 7, 8 | co 7451 |
. . . . 5
class (𝑛 / 2) |
10 | | cceil 13858 |
. . . . 5
class
⌈ |
11 | 9, 10 | cfv 6576 |
. . . 4
class
(⌈‘(𝑛 /
2)) |
12 | | cfzo 13722 |
. . . 4
class
..^ |
13 | 5, 11, 12 | co 7451 |
. . 3
class
(1..^(⌈‘(𝑛 / 2))) |
14 | | cnx 17260 |
. . . . . 6
class
ndx |
15 | | cbs 17278 |
. . . . . 6
class
Base |
16 | 14, 15 | cfv 6576 |
. . . . 5
class
(Base‘ndx) |
17 | | cc0 11187 |
. . . . . . 7
class
0 |
18 | 17, 5 | cpr 4650 |
. . . . . 6
class {0,
1} |
19 | 17, 6, 12 | co 7451 |
. . . . . 6
class
(0..^𝑛) |
20 | 18, 19 | cxp 5699 |
. . . . 5
class ({0, 1}
× (0..^𝑛)) |
21 | 16, 20 | cop 4654 |
. . . 4
class
〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉 |
22 | | cedgf 29041 |
. . . . . 6
class
.ef |
23 | 14, 22 | cfv 6576 |
. . . . 5
class
(.ef‘ndx) |
24 | | cid 5593 |
. . . . . 6
class
I |
25 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
26 | 25 | cv 1536 |
. . . . . . . . . 10
class 𝑒 |
27 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
28 | 27 | cv 1536 |
. . . . . . . . . . . 12
class 𝑥 |
29 | 17, 28 | cop 4654 |
. . . . . . . . . . 11
class 〈0,
𝑥〉 |
30 | | caddc 11190 |
. . . . . . . . . . . . . 14
class
+ |
31 | 28, 5, 30 | co 7451 |
. . . . . . . . . . . . 13
class (𝑥 + 1) |
32 | | cmo 13936 |
. . . . . . . . . . . . 13
class
mod |
33 | 31, 6, 32 | co 7451 |
. . . . . . . . . . . 12
class ((𝑥 + 1) mod 𝑛) |
34 | 17, 33 | cop 4654 |
. . . . . . . . . . 11
class 〈0,
((𝑥 + 1) mod 𝑛)〉 |
35 | 29, 34 | cpr 4650 |
. . . . . . . . . 10
class {〈0,
𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} |
36 | 26, 35 | wceq 1537 |
. . . . . . . . 9
wff 𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} |
37 | 5, 28 | cop 4654 |
. . . . . . . . . . 11
class 〈1,
𝑥〉 |
38 | 29, 37 | cpr 4650 |
. . . . . . . . . 10
class {〈0,
𝑥〉, 〈1, 𝑥〉} |
39 | 26, 38 | wceq 1537 |
. . . . . . . . 9
wff 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} |
40 | 3 | cv 1536 |
. . . . . . . . . . . . . 14
class 𝑘 |
41 | 28, 40, 30 | co 7451 |
. . . . . . . . . . . . 13
class (𝑥 + 𝑘) |
42 | 41, 6, 32 | co 7451 |
. . . . . . . . . . . 12
class ((𝑥 + 𝑘) mod 𝑛) |
43 | 5, 42 | cop 4654 |
. . . . . . . . . . 11
class 〈1,
((𝑥 + 𝑘) mod 𝑛)〉 |
44 | 37, 43 | cpr 4650 |
. . . . . . . . . 10
class {〈1,
𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉} |
45 | 26, 44 | wceq 1537 |
. . . . . . . . 9
wff 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉} |
46 | 36, 39, 45 | w3o 1086 |
. . . . . . . 8
wff (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉}) |
47 | 46, 27, 19 | wrex 3076 |
. . . . . . 7
wff
∃𝑥 ∈
(0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉}) |
48 | 20 | cpw 4622 |
. . . . . . 7
class 𝒫
({0, 1} × (0..^𝑛)) |
49 | 47, 25, 48 | crab 3443 |
. . . . . 6
class {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})} |
50 | 24, 49 | cres 5703 |
. . . . 5
class ( I
↾ {𝑒 ∈ 𝒫
({0, 1} × (0..^𝑛))
∣ ∃𝑥 ∈
(0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})}) |
51 | 23, 50 | cop 4654 |
. . . 4
class
〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉 |
52 | 21, 51 | cpr 4650 |
. . 3
class
{〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉} |
53 | 2, 3, 4, 13, 52 | cmpo 7453 |
. 2
class (𝑛 ∈ ℕ, 𝑘 ∈
(1..^(⌈‘(𝑛 /
2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) |
54 | 1, 53 | wceq 1537 |
1
wff
gPetersenGr = (𝑛 ∈
ℕ, 𝑘 ∈
(1..^(⌈‘(𝑛 /
2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑛)) ∣
∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) |