Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgov Structured version   Visualization version   GIF version

Theorem gpgov 48073
Description: The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.)
Hypotheses
Ref Expression
gpgov.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgov.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
gpgov ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
Distinct variable groups:   𝑒,𝐼,𝑥   𝑒,𝐾,𝑥   𝑒,𝑁,𝑥
Allowed substitution hints:   𝐽(𝑥,𝑒)

Proof of Theorem gpgov
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5370 . 2 {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩} ∈ V
2 oveq2 7349 . . . . . . . 8 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
3 gpgov.i . . . . . . . 8 𝐼 = (0..^𝑁)
42, 3eqtr4di 2784 . . . . . . 7 (𝑛 = 𝑁 → (0..^𝑛) = 𝐼)
54xpeq2d 5641 . . . . . 6 (𝑛 = 𝑁 → ({0, 1} × (0..^𝑛)) = ({0, 1} × 𝐼))
65opeq2d 4827 . . . . 5 (𝑛 = 𝑁 → ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩ = ⟨(Base‘ndx), ({0, 1} × 𝐼)⟩)
76adantr 480 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩ = ⟨(Base‘ndx), ({0, 1} × 𝐼)⟩)
85pweqd 4562 . . . . . . . 8 (𝑛 = 𝑁 → 𝒫 ({0, 1} × (0..^𝑛)) = 𝒫 ({0, 1} × 𝐼))
98adantr 480 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → 𝒫 ({0, 1} × (0..^𝑛)) = 𝒫 ({0, 1} × 𝐼))
104rexeqdv 3293 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})))
1110adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})))
12 oveq2 7349 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((𝑥 + 1) mod 𝑛) = ((𝑥 + 1) mod 𝑁))
1312opeq2d 4827 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ⟨0, ((𝑥 + 1) mod 𝑛)⟩ = ⟨0, ((𝑥 + 1) mod 𝑁)⟩)
1413preq2d 4688 . . . . . . . . . . . 12 (𝑛 = 𝑁 → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
1514adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
1615eqeq2d 2742 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ↔ 𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
17 biidd 262 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
18 oveq2 7349 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑥 + 𝑘) = (𝑥 + 𝐾))
1918adantl 481 . . . . . . . . . . . . . 14 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑥 + 𝑘) = (𝑥 + 𝐾))
20 simpl 482 . . . . . . . . . . . . . 14 ((𝑛 = 𝑁𝑘 = 𝐾) → 𝑛 = 𝑁)
2119, 20oveq12d 7359 . . . . . . . . . . . . 13 ((𝑛 = 𝑁𝑘 = 𝐾) → ((𝑥 + 𝑘) mod 𝑛) = ((𝑥 + 𝐾) mod 𝑁))
2221opeq2d 4827 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩ = ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)
2322preq2d 4688 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
2423eqeq2d 2742 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩} ↔ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
2516, 17, 243orbi123d 1437 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2625rexbidv 3156 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2711, 26bitrd 279 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
289, 27rabeqbidv 3413 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})} = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
2928reseq2d 5923 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})}) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
3029opeq2d 4827 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩)
317, 30preq12d 4689 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩} = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
32 fvoveq1 7364 . . . . 5 (𝑛 = 𝑁 → (⌈‘(𝑛 / 2)) = (⌈‘(𝑁 / 2)))
3332oveq2d 7357 . . . 4 (𝑛 = 𝑁 → (1..^(⌈‘(𝑛 / 2))) = (1..^(⌈‘(𝑁 / 2))))
34 gpgov.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3533, 34eqtr4di 2784 . . 3 (𝑛 = 𝑁 → (1..^(⌈‘(𝑛 / 2))) = 𝐽)
36 df-gpg 48072 . . 3 gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
3731, 35, 36ovmpox 7494 . 2 ((𝑁 ∈ ℕ ∧ 𝐾𝐽 ∧ {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩} ∈ V) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
381, 37mp3an3 1452 1 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  𝒫 cpw 4545  {cpr 4573  cop 4577   I cid 5505   × cxp 5609  cres 5613  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   + caddc 11004   / cdiv 11769  cn 12120  2c2 12175  ..^cfzo 13549  cceil 13690   mod cmo 13768  ndxcnx 17099  Basecbs 17115  .efcedgf 28961   gPetersenGr cgpg 48071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-gpg 48072
This theorem is referenced by:  gpgvtx  48074  gpgiedg  48075
  Copyright terms: Public domain W3C validator