Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgov Structured version   Visualization version   GIF version

Theorem gpgov 47974
Description: The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.)
Hypotheses
Ref Expression
gpgov.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgov.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
gpgov ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
Distinct variable groups:   𝑒,𝐼,𝑥   𝑒,𝐾,𝑥   𝑒,𝑁,𝑥
Allowed substitution hints:   𝐽(𝑥,𝑒)

Proof of Theorem gpgov
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5417 . 2 {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩} ∈ V
2 oveq2 7421 . . . . . . . 8 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
3 gpgov.i . . . . . . . 8 𝐼 = (0..^𝑁)
42, 3eqtr4di 2787 . . . . . . 7 (𝑛 = 𝑁 → (0..^𝑛) = 𝐼)
54xpeq2d 5695 . . . . . 6 (𝑛 = 𝑁 → ({0, 1} × (0..^𝑛)) = ({0, 1} × 𝐼))
65opeq2d 4860 . . . . 5 (𝑛 = 𝑁 → ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩ = ⟨(Base‘ndx), ({0, 1} × 𝐼)⟩)
76adantr 480 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩ = ⟨(Base‘ndx), ({0, 1} × 𝐼)⟩)
85pweqd 4597 . . . . . . . 8 (𝑛 = 𝑁 → 𝒫 ({0, 1} × (0..^𝑛)) = 𝒫 ({0, 1} × 𝐼))
98adantr 480 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → 𝒫 ({0, 1} × (0..^𝑛)) = 𝒫 ({0, 1} × 𝐼))
104rexeqdv 3310 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})))
1110adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})))
12 oveq2 7421 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((𝑥 + 1) mod 𝑛) = ((𝑥 + 1) mod 𝑁))
1312opeq2d 4860 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ⟨0, ((𝑥 + 1) mod 𝑛)⟩ = ⟨0, ((𝑥 + 1) mod 𝑁)⟩)
1413preq2d 4720 . . . . . . . . . . . 12 (𝑛 = 𝑁 → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
1514adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
1615eqeq2d 2745 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ↔ 𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
17 biidd 262 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
18 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑥 + 𝑘) = (𝑥 + 𝐾))
1918adantl 481 . . . . . . . . . . . . . 14 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑥 + 𝑘) = (𝑥 + 𝐾))
20 simpl 482 . . . . . . . . . . . . . 14 ((𝑛 = 𝑁𝑘 = 𝐾) → 𝑛 = 𝑁)
2119, 20oveq12d 7431 . . . . . . . . . . . . 13 ((𝑛 = 𝑁𝑘 = 𝐾) → ((𝑥 + 𝑘) mod 𝑛) = ((𝑥 + 𝐾) mod 𝑁))
2221opeq2d 4860 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩ = ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)
2322preq2d 4720 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
2423eqeq2d 2745 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩} ↔ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
2516, 17, 243orbi123d 1436 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2625rexbidv 3166 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2711, 26bitrd 279 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
289, 27rabeqbidv 3438 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})} = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
2928reseq2d 5977 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})}) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
3029opeq2d 4860 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩)
317, 30preq12d 4721 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩} = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
32 fvoveq1 7436 . . . . 5 (𝑛 = 𝑁 → (⌈‘(𝑛 / 2)) = (⌈‘(𝑁 / 2)))
3332oveq2d 7429 . . . 4 (𝑛 = 𝑁 → (1..^(⌈‘(𝑛 / 2))) = (1..^(⌈‘(𝑁 / 2))))
34 gpgov.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3533, 34eqtr4di 2787 . . 3 (𝑛 = 𝑁 → (1..^(⌈‘(𝑛 / 2))) = 𝐽)
36 df-gpg 47973 . . 3 gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
3731, 35, 36ovmpox 7568 . 2 ((𝑁 ∈ ℕ ∧ 𝐾𝐽 ∧ {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩} ∈ V) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
381, 37mp3an3 1451 1 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  Vcvv 3463  𝒫 cpw 4580  {cpr 4608  cop 4612   I cid 5557   × cxp 5663  cres 5667  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140   / cdiv 11902  cn 12248  2c2 12303  ..^cfzo 13676  cceil 13813   mod cmo 13891  ndxcnx 17213  Basecbs 17230  .efcedgf 28934   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-gpg 47973
This theorem is referenced by:  gpgvtx  47975  gpgiedg  47976
  Copyright terms: Public domain W3C validator