Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgov Structured version   Visualization version   GIF version

Theorem gpgov 47891
Description: The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.)
Hypotheses
Ref Expression
gpgov.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgov.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
gpgov ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
Distinct variable groups:   𝑒,𝐼,𝑥   𝑒,𝐾,𝑥   𝑒,𝑁,𝑥
Allowed substitution hints:   𝐽(𝑥,𝑒)

Proof of Theorem gpgov
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5453 . 2 {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩} ∈ V
2 oveq2 7459 . . . . . . . 8 (𝑛 = 𝑁 → (0..^𝑛) = (0..^𝑁))
3 gpgov.i . . . . . . . 8 𝐼 = (0..^𝑁)
42, 3eqtr4di 2798 . . . . . . 7 (𝑛 = 𝑁 → (0..^𝑛) = 𝐼)
54xpeq2d 5731 . . . . . 6 (𝑛 = 𝑁 → ({0, 1} × (0..^𝑛)) = ({0, 1} × 𝐼))
65opeq2d 4905 . . . . 5 (𝑛 = 𝑁 → ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩ = ⟨(Base‘ndx), ({0, 1} × 𝐼)⟩)
76adantr 480 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩ = ⟨(Base‘ndx), ({0, 1} × 𝐼)⟩)
85pweqd 4639 . . . . . . . 8 (𝑛 = 𝑁 → 𝒫 ({0, 1} × (0..^𝑛)) = 𝒫 ({0, 1} × 𝐼))
98adantr 480 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → 𝒫 ({0, 1} × (0..^𝑛)) = 𝒫 ({0, 1} × 𝐼))
104rexeqdv 3335 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})))
1110adantr 480 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})))
12 oveq2 7459 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((𝑥 + 1) mod 𝑛) = ((𝑥 + 1) mod 𝑁))
1312opeq2d 4905 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ⟨0, ((𝑥 + 1) mod 𝑛)⟩ = ⟨0, ((𝑥 + 1) mod 𝑁)⟩)
1413preq2d 4765 . . . . . . . . . . . 12 (𝑛 = 𝑁 → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
1514adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
1615eqeq2d 2751 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ↔ 𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
17 biidd 262 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
18 oveq2 7459 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → (𝑥 + 𝑘) = (𝑥 + 𝐾))
1918adantl 481 . . . . . . . . . . . . . 14 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑥 + 𝑘) = (𝑥 + 𝐾))
20 simpl 482 . . . . . . . . . . . . . 14 ((𝑛 = 𝑁𝑘 = 𝐾) → 𝑛 = 𝑁)
2119, 20oveq12d 7469 . . . . . . . . . . . . 13 ((𝑛 = 𝑁𝑘 = 𝐾) → ((𝑥 + 𝑘) mod 𝑛) = ((𝑥 + 𝐾) mod 𝑁))
2221opeq2d 4905 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩ = ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)
2322preq2d 4765 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
2423eqeq2d 2751 . . . . . . . . . 10 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩} ↔ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
2516, 17, 243orbi123d 1435 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2625rexbidv 3185 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2711, 26bitrd 279 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩}) ↔ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
289, 27rabeqbidv 3462 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})} = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
2928reseq2d 6012 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})}) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
3029opeq2d 4905 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩ = ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩)
317, 30preq12d 4766 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩} = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
32 fvoveq1 7474 . . . . 5 (𝑛 = 𝑁 → (⌈‘(𝑛 / 2)) = (⌈‘(𝑁 / 2)))
3332oveq2d 7467 . . . 4 (𝑛 = 𝑁 → (1..^(⌈‘(𝑛 / 2))) = (1..^(⌈‘(𝑁 / 2))))
34 gpgov.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3533, 34eqtr4di 2798 . . 3 (𝑛 = 𝑁 → (1..^(⌈‘(𝑛 / 2))) = 𝐽)
36 df-gpg 47890 . . 3 gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
3731, 35, 36ovmpox 7606 . 2 ((𝑁 ∈ ℕ ∧ 𝐾𝐽 ∧ {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩} ∈ V) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
381, 37mp3an3 1450 1 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑁 gPetersenGr 𝐾) = {⟨(Base‘ndx), ({0, 1} × 𝐼)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {cpr 4650  cop 4654   I cid 5593   × cxp 5699  cres 5703  cfv 6576  (class class class)co 7451  0cc0 11187  1c1 11188   + caddc 11190   / cdiv 11952  cn 12298  2c2 12353  ..^cfzo 13722  cceil 13858   mod cmo 13936  ndxcnx 17260  Basecbs 17278  .efcedgf 29041   gPetersenGr cgpg 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5318  ax-nul 5325  ax-pr 5448
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4933  df-br 5168  df-opab 5230  df-id 5594  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-res 5713  df-iota 6528  df-fun 6578  df-fv 6584  df-ov 7454  df-oprab 7455  df-mpo 7456  df-gpg 47890
This theorem is referenced by:  gpgvtx  47892  gpgiedg  47893
  Copyright terms: Public domain W3C validator