| Metamath
Proof Explorer Theorem List (p. 481 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isubgr3stgrlem6 48001* | Lemma 6 for isubgr3stgr 48005. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁))) | ||
| Theorem | isubgr3stgrlem7 48002* | Lemma 7 for isubgr3stgr 48005. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (◡𝐹 “ 𝐽) ∈ 𝐼) | ||
| Theorem | isubgr3stgrlem8 48003* | Lemma 8 for isubgr3stgr 48005. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) | ||
| Theorem | isubgr3stgrlem9 48004* | Lemma 9 for isubgr3stgr 48005. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) | ||
| Theorem | isubgr3stgr 48005* | If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))) | ||
This section is about local isomorphisms of graphs, which are a generalization of isomorphisms of graphs, i.e., every isomorphism between two graphs is also a local isomorphism between these graphs, see uhgrimgrlim 48017. This definition is according to a chat in mathoverflow (https://mathoverflow.net/questions/491133/locally-isomorphic-graphs 48017): roughly speaking, it restricts the correspondence of two graphs to their neighborhoods. Additionally, a binary relation ≃𝑙𝑔𝑟 is defined (see df-grlic 48011) which is true for two graphs iff there is a local isomorphism between these graphs. Then these graphs are called "locally isomorphic". Therefore, this relation is also called "is locally isomorphic to" relation. As a main result of this section, it is shown that the "is locally isomorphic to" relation is an equivalence relation (for hypergraphs), see grlicer 48046. The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19169) and graph isomorphisms GraphIso (see df-grim 47908) resp. isomorphism between groups ≃𝑔 (see df-gic 19170) and isomorphism between graphs ≃𝑔𝑟 (see df-gric 47911). As discussed in the above mentioned chat in mathoverflow, it is shown that there are local isomorphisms between two graphs which are not (ordinary) isomorphisms between these graphs. In other words, there are two different locally isomorphic graphs which are not isomorphic, see lgricngricex 48159. Such two graphs are the two generalized Petersen graphs G(5,K) of order 10 (see definition df-gpg 48071), which are the Petersen graph G(5,2) and the 5-prism G(5,1), see gpg5ngric 48158. | ||
| Syntax | cgrlim 48006 | The class of graph local isomorphism sets. |
| class GraphLocIso | ||
| Syntax | cgrlic 48007 | The class of the graph local isomorphism relation. |
| class ≃𝑙𝑔𝑟 | ||
| Definition | df-grlim 48008* | A local isomorphism of graphs is a bijection between the sets of vertices of two graphs that preserves local adjacency, i.e. the subgraph induced by the closed neighborhood of a vertex of the first graph and the subgraph induced by the closed neighborhood of the associated vertex of the second graph are isomorphic. See the following chat in mathoverflow: https://mathoverflow.net/questions/491133/locally-isomorphic-graphs. (Contributed by AV, 27-Apr-2025.) |
| ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | ||
| Theorem | grlimfn 48009 | The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
| ⊢ GraphLocIso Fn (V × V) | ||
| Theorem | grlimdmrel 48010 | The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025.) |
| ⊢ Rel dom GraphLocIso | ||
| Definition | df-grlic 48011 | Two graphs are said to be locally isomorphic iff they are connected by at least one local isomorphism. (Contributed by AV, 27-Apr-2025.) |
| ⊢ ≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖ 1o)) | ||
| Theorem | isgrlim 48012* | A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. (Contributed by AV, 20-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) | ||
| Theorem | isgrlim2 48013* | A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grlimprop 48014* | Properties of a local isomorphism of graphs. (Contributed by AV, 21-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))))) | ||
| Theorem | grlimf1o 48015 | A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | ||
| Theorem | grlimprop2 48016* | Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
| Theorem | uhgrimgrlim 48017 | An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | ||
| Theorem | uspgrlimlem1 48018* | Lemma 1 for uspgrlim 48022. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑋) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) | ||
| Theorem | uspgrlimlem2 48019* | Lemma 2 for uspgrlim 48022. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑋) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (𝐻 ∈ USPGraph → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) | ||
| Theorem | uspgrlimlem3 48020* | Lemma 3 for uspgrlim 48022. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → (𝑒 ∈ 𝐾 → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) | ||
| Theorem | uspgrlimlem4 48021* | Lemma 4 for uspgrlim 48022. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) | ||
| Theorem | uspgrlim 48022* | A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 48013). (Contributed by AV, 15-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) | ||
| Theorem | usgrlimprop 48023* | Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) | ||
| Theorem | clnbgrvtxedg 48024* | An edge 𝐸 containing a vertex 𝐴 is an edge in the closed neighborhood of this vertex 𝐴. (Contributed by AV, 25-Dec-2025.) |
| ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸) → 𝐸 ∈ 𝐾) | ||
| Theorem | grlimedgclnbgr 48025* | For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there are two bijections 𝑓 and 𝑔 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹‘𝐴) and the edges between the vertices in 𝑁 onto the edges between the vertices in 𝑀, so that the mapped vertices of an edge 𝐸 containing the vertex 𝐴 is an edge between the vertices in 𝑀. (Contributed by AV, 25-Dec-2025.) |
| ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐸 ∈ 𝐼 ∧ 𝐴 ∈ 𝐸)) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (𝑓 “ 𝐸) = (𝑔‘𝐸))) | ||
| Theorem | grlimprclnbgr 48026* | For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there are two bijections 𝑓 and 𝑔 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹‘𝐴) and the edges between the vertices in 𝑁 onto the edges between the vertices in 𝑀, so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge between the vertices in 𝑀. (Contributed by AV, 25-Dec-2025.) |
| ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓∃𝑔(𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} = (𝑔‘{𝐴, 𝐵}))) | ||
| Theorem | grlimprclnbgredg 48027* | For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there is a bijection 𝑓 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹‘𝐴), so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge between the vertices in 𝑀. (Contributed by AV, 27-Dec-2025.) |
| ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) | ||
| Theorem | grlimpredg 48028* | For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there is a bijection 𝑓 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹‘𝐴), so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge in 𝐻. (Contributed by AV, 27-Dec-2025.) |
| ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽)) | ||
| Theorem | grlimprclnbgrvtx 48029* | For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there is a bijection 𝑓 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹‘𝐴), so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge between the vertices in 𝑀 containing the vertex (𝐹‘𝐴). (Contributed by AV, 28-Dec-2025.) |
| ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ({(𝐹‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ∨ {(𝐹‘𝐴), (𝑓‘𝐴)} ∈ 𝐿))) | ||
| Theorem | grlimgredgex 48030* | Local isomorphisms between simple pseudographs map an edge onto an edge with an endpoint being the image of one of the endpoints of the first edge under the local isomorphism. (Contributed by AV, 28-Dec-2025.) |
| ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐻) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝐼) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝑉 {(𝐹‘𝐴), 𝑣} ∈ 𝐸) | ||
| Theorem | grlimgrtrilem1 48031* | Lemma 3 for grlimgrtri 48033. (Contributed by AV, 24-Aug-2025.) (Proof shortened by AV, 27-Dec-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾)) | ||
| Theorem | grlimgrtrilem2 48032* | Lemma 3 for grlimgrtri 48033. (Contributed by AV, 23-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑎)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑏, 𝑐} ∈ 𝐾) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽) | ||
| Theorem | grlimgrtri 48033* | If one of two locally isomorphic graphs has a triangle, so does the other. The triangle in the other graph is not necessarily the image (𝐹 “ 𝑇) of the triangle 𝑇 in the first graph. (Contributed by AV, 24-Aug-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) ⇒ ⊢ (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻)) | ||
| Theorem | brgrlic 48034 | The relation "is locally isomorphic to" for graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅) | ||
| Theorem | brgrilci 48035 | Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐹 ∈ (𝑅 GraphLocIso 𝑆) → 𝑅 ≃𝑙𝑔𝑟 𝑆) | ||
| Theorem | grlicrel 48036 | The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025.) |
| ⊢ Rel ≃𝑙𝑔𝑟 | ||
| Theorem | grlicrcl 48037 | Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ≃𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | dfgrlic2 48038* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) | ||
| Theorem | grilcbri 48039* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) | ||
| Theorem | dfgrlic3 48040* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grilcbri2 48041* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑋)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grlicref 48042 | Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺) | ||
| Theorem | grlicsym 48043 | Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺)) | ||
| Theorem | grlicsymb 48044 | Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) | ||
| Theorem | grlictr 48045 | Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.) |
| ⊢ ((𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇) → 𝑅 ≃𝑙𝑔𝑟 𝑇) | ||
| Theorem | grlicer 48046 | Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
| ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
| Theorem | grlicen 48047 | Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
| ⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | gricgrlic 48048 | Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) | ||
| Theorem | clnbgr3stgrgrlim 48049* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then any bijection between the vertices is a local isomorphism between the two graphs. (Contributed by AV, 28-Dec-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | ||
| Theorem | clnbgr3stgrgrlic 48050* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉 ≈ 𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | ||
| Theorem | usgrexmpl1lem 48051* | Lemma for usgrexmpl1 48052. (Contributed by AV, 2-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl1 48052 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl1vtx 48053 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl1edg 48054 | The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | ||
| Theorem | usgrexmpl1tri 48055 | 𝐺 contains a triangle 0, 1, 2, with corresponding edges {0, 1}, {1, 2}, {0, 2}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl2lem 48056* | Lemma for usgrexmpl2 48057. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl2 48057 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl2vtx 48058 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl2edg 48059 | The edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) | ||
| Theorem | usgrexmpl2nblem 48060* | Lemma for usgrexmpl2nb0 48061 etc. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐾 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {𝐾, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) | ||
| Theorem | usgrexmpl2nb0 48061 | The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 0) = {1, 3, 5} | ||
| Theorem | usgrexmpl2nb1 48062 | The neighborhood of the second vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 1) = {0, 2} | ||
| Theorem | usgrexmpl2nb2 48063 | The neighborhood of the third vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 2) = {1, 3} | ||
| Theorem | usgrexmpl2nb3 48064 | The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 3) = {0, 2, 4} | ||
| Theorem | usgrexmpl2nb4 48065 | The neighborhood of the fifth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 4) = {3, 5} | ||
| Theorem | usgrexmpl2nb5 48066 | The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 5) = {0, 4} | ||
| Theorem | usgrexmpl2trifr 48067* | 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl12ngric 48068 | The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48055, whereas 𝐺 does not, see usgrexmpl2trifr 48067. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 | ||
| Theorem | usgrexmpl12ngrlic 48069 | The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48055, whereas 𝐺 does not, see usgrexmpl2trifr 48067. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 | ||
According to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph: "In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. ... Among the generalized Petersen graphs are the n-prism, ...". The vertices of the regular polygon are called "outside vertices", the vertices of the star polygon "inside vertices" (see A. Steimle, W. Stanton, "The isomorphism classes of the generalized Petersen graphs", Discrete Mathematics Volume 309, Issue 1, 6 January 2009, Pages 231-237: https://doi.org/10.1016/j.disc.2007.12.074). Since regular polygons are also considered as star polygons (with density 1), many theorems for "inside vertices" (with labels containing the fragment "vtx1") can be specialized for "outside vertices" (with labels containing the fragment "vtx0"). | ||
| Syntax | cgpg 48070 | Extend class notation with generalized Petersen graphs. |
| class gPetersenGr | ||
| Definition | df-gpg 48071* |
Definition of generalized Petersen graphs according to Wikipedia
"Generalized Petersen graph", 26-Aug-2025,
https://en.wikipedia.org/wiki/Generalized_Petersen_graph:
"In
Watkins' notation, 𝐺(𝑛, 𝑘) is a graph with vertex set {
u0,
u1, ... , un-1, v0, v1, ... , vn-1 } and
edge set { ui ui+1 , ui
vi , vi vi+k | 0 ≤ 𝑖 ≤
(𝑛 − 1) }
where subscripts are to be
read modulo n and where 𝑘 < (𝑛 / 2). Some authors use the
notation GPG(n,k)."
Instead of 𝑛 ∈ ℕ, we could restrict the first argument to 𝑛 ∈ (ℤ≥‘3) (i.e., 3 ≤ 𝑛), because for 𝑛 ≤ 2, the definition is not meaningful (since then (⌈‘(𝑛 / 2)) ≤ 1 and therefore (1..^(⌈‘(𝑛 / 2))) = ∅, so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025.) |
| ⊢ gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) | ||
| Theorem | gpgov 48072* | The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) = {〈(Base‘ndx), ({0, 1} × 𝐼)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})〉}) | ||
| Theorem | gpgvtx 48073 | The vertices of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) | ||
| Theorem | gpgiedg 48074* | The indexed edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) | ||
| Theorem | gpgedg 48075* | The edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) | ||
| Theorem | gpgiedgdmellem 48076* | Lemma for gpgiedgdmel 48079 and gpgedgel 48080. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) | ||
| Theorem | gpgvtxel 48077* | A vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ 𝐼 𝑋 = 〈𝑥, 𝑦〉)) | ||
| Theorem | gpgvtxel2 48078 | The second component of a vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ 𝐼) | ||
| Theorem | gpgiedgdmel 48079* | An index of edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgedgel 48080* | An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmel 48081* | An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmss 48082 | A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ({{〈0, 0〉, 〈0, 1〉}, {〈0, 0〉, 〈1, 0〉}} ∪ {{〈1, 1〉, 〈0, 1〉}, {〈1, 1〉, 〈1, 0〉}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) | ||
| Theorem | gpgvtx0 48083 | The outside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | gpgvtx1 48084 | The inside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | opgpgvtx 48085 | A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) | ||
| Theorem | gpgusgralem 48086* | Lemma for gpgusgra 48087. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × 𝐼) ∣ (♯‘𝑝) = 2}) | ||
| Theorem | gpgusgra 48087 | The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) | ||
| Theorem | gpgprismgrusgra 48088 | The generalized Petersen graphs G(N,1), which are the N-prisms, are simple graphs. (Contributed by AV, 31-Oct-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | ||
| Theorem | gpgorder 48089 | The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) | ||
| Theorem | gpg5order 48090 | The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025.) |
| ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) | ||
| Theorem | gpgedgvtx0 48091 | The edges starting at an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgedgvtx1 48092 | The edges starting at an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgvtxedg0 48093 | The edges starting at an outside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑌 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) | ||
| Theorem | gpgvtxedg1 48094 | The edges starting at an inside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑌 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) | ||
| Theorem | gpgedgiov 48095 | The edges of the generalized Petersen graph GPG(N,K) between an inside and an outside vertex. (Contributed by AV, 11-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → ({〈0, 𝑋〉, 〈1, 𝑌〉} ∈ 𝐸 ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2ov 48096 | The edges of the generalized Petersen graph GPG(N,K) between two outside vertices. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘5) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (({〈0, ((𝑌 − 1) mod 𝑁)〉, 〈0, 𝑋〉} ∈ 𝐸 ∧ {〈0, 𝑋〉, 〈0, ((𝑌 + 1) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2iv 48097 | The edges of the generalized Petersen graph GPG(N,K) between two inside vertices. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ (𝐾 ∈ 𝐽 ∧ ((4 · 𝐾) mod 𝑁) ≠ 0)) → (({〈1, ((𝑌 − 𝐾) mod 𝑁)〉, 〈1, 𝑋〉} ∈ 𝐸 ∧ {〈1, 𝑋〉, 〈1, ((𝑌 + 𝐾) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpg5nbgrvtx03starlem1 48098 | Lemma 1 for gpg5nbgrvtx03star 48110. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈1, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem2 48099 | Lemma 2 for gpg5nbgrvtx03star 48110. (Contributed by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ ℤ) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem3 48100 | Lemma 3 for gpg5nbgrvtx03star 48110. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈1, 𝑋〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |