| Metamath
Proof Explorer Theorem List (p. 481 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-grisom 48001* |
Define the class of all isomorphisms between two graphs. In contrast to
(𝐹
GraphIso 𝐻), which
is a set of functions between the vertices,
(𝐹
GraphIsom 𝐻) is a
set of pairs of functions: a function between
the vertices, and a function between the (indices of the) edges.
It is not clear if such a definition is useful. In the definition by [Diestel] p. 3, for example, the bijection between the vertices is called an isomorphism, as formalized in df-grim 48002. (Contributed by AV, 11-Dec-2022.) (New usage is discouraged.) |
| ⊢ GraphIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) | ||
| Definition | df-grim 48002* | An isomorphism between two graphs is a bijection between the sets of vertices of the two graphs that preserves adjacency, see definition in [Diestel] p. 3. (Contributed by AV, 19-Apr-2025.) |
| ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) | ||
| Theorem | grimfn 48003 | The graph isomorphism function is a well-defined function. (Contributed by AV, 28-Apr-2025.) |
| ⊢ GraphIso Fn (V × V) | ||
| Theorem | grimdmrel 48004 | The domain of the graph isomorphism function is a relation. (Contributed by AV, 28-Apr-2025.) |
| ⊢ Rel dom GraphIso | ||
| Definition | df-gric 48005 | Two graphs are said to be isomorphic iff they are connected by at least one isomorphism, see definition in [Diestel] p. 3 and definition in [Bollobas] p. 3. Isomorphic graphs share all global graph properties like order and size. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 19-Apr-2025.) |
| ⊢ ≃𝑔𝑟 = (◡ GraphIso “ (V ∖ 1o)) | ||
| Theorem | isgrim 48006* | An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐷 = (iEdg‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖)))))) | ||
| Theorem | grimprop 48007* | Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (iEdg‘𝐺) & ⊢ 𝐷 = (iEdg‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom 𝐸–1-1-onto→dom 𝐷 ∧ ∀𝑖 ∈ dom 𝐸(𝐷‘(𝑗‘𝑖)) = (𝐹 “ (𝐸‘𝑖))))) | ||
| Theorem | grimf1o 48008 | An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | ||
| Theorem | grimidvtxedg 48009 | The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ (𝜑 → (Vtx‘𝐺) = (Vtx‘𝐻)) & ⊢ (𝜑 → (iEdg‘𝐺) = (iEdg‘𝐻)) ⇒ ⊢ (𝜑 → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻)) | ||
| Theorem | grimid 48010 | The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and itself. (Contributed by AV, 29-Apr-2025.) (Prove shortened by AV, 5-May-2025.) |
| ⊢ (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐺)) | ||
| Theorem | grimuhgr 48011 | If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025.) |
| ⊢ ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph) | ||
| Theorem | grimcnv 48012 | The converse of a graph isomorphism is a graph isomorphism. (Contributed by AV, 1-May-2025.) |
| ⊢ (𝑆 ∈ UHGraph → (𝐹 ∈ (𝑆 GraphIso 𝑇) → ◡𝐹 ∈ (𝑇 GraphIso 𝑆))) | ||
| Theorem | grimco 48013 | The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025.) |
| ⊢ ((𝐹 ∈ (𝑇 GraphIso 𝑈) ∧ 𝐺 ∈ (𝑆 GraphIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GraphIso 𝑈)) | ||
| Theorem | uhgrimedgi 48014 | An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ∈ 𝐸)) → (𝐹 “ 𝐾) ∈ 𝐷) | ||
| Theorem | uhgrimedg 48015 | An isomorphism between graphs preserves edges, i.e. there is an edge in one graph connecting vertices iff there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐾 ∈ 𝐸 ↔ (𝐹 “ 𝐾) ∈ 𝐷)) | ||
| Theorem | uhgrimprop 48016* | An isomorphism between hypergraphs is a bijection between their vertices that preserves adjacency for simple edges, i.e. there is a simple edge in one graph connecting one or two vertices iff there is a simple edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025.) (Revised by AV, 25-Oct-2025.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷))) | ||
| Theorem | isuspgrim0lem 48017* | An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑀 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) & ⊢ 𝑁 = (𝑥 ∈ dom 𝐼 ↦ (◡𝐽‘(𝑀‘(𝐼‘𝑥)))) ⇒ ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ 𝑀:𝐸–1-1-onto→𝐷) → (𝑁:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝐽‘(𝑁‘𝑖)) = (𝐹 “ (𝐼‘𝑖)))) | ||
| Theorem | isuspgrim0 48018* | An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) | ||
| Theorem | isuspgrimlem 48019* | Lemma for isuspgrim 48020. (Contributed by AV, 27-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) | ||
| Theorem | isuspgrim 48020* | A class is an isomorphism of simple pseudographs iff it is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. This corresponds to the formal definition in [Bollobas] p. 3 and the definition in [Diestel] p. 3. (Contributed by AV, 27-Apr-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) | ||
| Theorem | upgrimwlklem1 48021* | Lemma 1 for upgrimwlk 48026 and upgrimwlklen 48027. (Contributed by AV, 25-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) ⇒ ⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) | ||
| Theorem | upgrimwlklem2 48022* | Lemma 2 for upgrimwlk 48026. (Contributed by AV, 25-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) ⇒ ⊢ (𝜑 → 𝐸 ∈ Word dom 𝐽) | ||
| Theorem | upgrimwlklem3 48023* | Lemma 3 for upgrimwlk 48026. (Contributed by AV, 25-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0..^(♯‘𝐸))) → (𝐽‘(𝐸‘𝑋)) = (𝑁 “ (𝐼‘(𝐹‘𝑋)))) | ||
| Theorem | upgrimwlklem4 48024* | Lemma 4 for upgrimwlk 48026. (Contributed by AV, 28-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) & ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ⇒ ⊢ (𝜑 → (𝑁 ∘ 𝑃):(0...(♯‘𝐸))⟶(Vtx‘𝐻)) | ||
| Theorem | upgrimwlklem5 48025* | Lemma 5 for upgrimwlk 48026. (Contributed by AV, 28-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐸))) → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))}) | ||
| Theorem | upgrimwlk 48026* | Graph isomorphisms between simple pseudographs map walks onto walks. (Contributed by AV, 28-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃)) | ||
| Theorem | upgrimwlklen 48027* | Graph isomorphisms between simple pseudographs map walks onto walks of the same length. (Contributed by AV, 6-Nov-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) ⇒ ⊢ (𝜑 → (𝐸(Walks‘𝐻)(𝑁 ∘ 𝑃) ∧ (♯‘𝐸) = (♯‘𝐹))) | ||
| Theorem | upgrimtrlslem1 48028* | Lemma 1 for upgrimtrls 48030. (Contributed by AV, 29-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ dom 𝐹) → (𝑁 “ (𝐼‘(𝐹‘𝑋))) ∈ (Edg‘𝐻)) | ||
| Theorem | upgrimtrlslem2 48029* | Lemma 2 for upgrimtrls 48030. (Contributed by AV, 29-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥)))) = (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑦)))) → 𝑥 = 𝑦)) | ||
| Theorem | upgrimtrls 48030* | Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐸(Trails‘𝐻)(𝑁 ∘ 𝑃)) | ||
| Theorem | upgrimpthslem1 48031* | Lemma 1 for upgrimpths 48033. (Contributed by AV, 30-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → Fun ◡((𝑁 ∘ 𝑃) ↾ (1..^(♯‘𝐹)))) | ||
| Theorem | upgrimpthslem2 48032* | Lemma 2 for upgrimpths 48033. (Contributed by AV, 31-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (1..^(♯‘𝐹))) → (¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘0) ∧ ¬ ((𝑁 ∘ 𝑃)‘𝑋) = ((𝑁 ∘ 𝑃)‘(♯‘𝐹)))) | ||
| Theorem | upgrimpths 48033* | Graph isomorphisms between simple pseudographs map paths onto paths. (Contributed by AV, 31-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐸(Paths‘𝐻)(𝑁 ∘ 𝑃)) | ||
| Theorem | upgrimspths 48034* | Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐸(SPaths‘𝐻)(𝑁 ∘ 𝑃)) | ||
| Theorem | upgrimcycls 48035* | Graph isomorphisms between simple pseudographs map cycles onto cycles. (Contributed by AV, 31-Oct-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) & ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐸(Cycles‘𝐻)(𝑁 ∘ 𝑃)) | ||
| Theorem | brgric 48036 | The relation "is isomorphic to" for graphs. (Contributed by AV, 28-Apr-2025.) |
| ⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | ||
| Theorem | brgrici 48037 | Prove that two graphs are isomorphic by an explicit isomorphism. (Contributed by AV, 28-Apr-2025.) |
| ⊢ (𝐹 ∈ (𝑅 GraphIso 𝑆) → 𝑅 ≃𝑔𝑟 𝑆) | ||
| Theorem | gricrcl 48038 | Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025.) |
| ⊢ (𝐺 ≃𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | dfgric2 48039* | Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐼 = (iEdg‘𝐴) & ⊢ 𝐽 = (iEdg‘𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
| Theorem | gricbri 48040* | Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) (Proof shortened by AV, 12-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐼 = (iEdg‘𝐴) & ⊢ 𝐽 = (iEdg‘𝐵) ⇒ ⊢ (𝐴 ≃𝑔𝑟 𝐵 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:dom 𝐼–1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))) | ||
| Theorem | gricushgr 48041* | The "is isomorphic to" relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) | ||
| Theorem | gricuspgr 48042* | The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.) (Proof shortened by AV, 5-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐴) & ⊢ 𝑊 = (Vtx‘𝐵) & ⊢ 𝐸 = (Edg‘𝐴) & ⊢ 𝐾 = (Edg‘𝐵) ⇒ ⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 ≃𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) | ||
| Theorem | gricrel 48043 | The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 5-May-2025.) |
| ⊢ Rel ≃𝑔𝑟 | ||
| Theorem | gricref 48044 | Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 29-Apr-2025.) |
| ⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑔𝑟 𝐺) | ||
| Theorem | gricsym 48045 | Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺)) | ||
| Theorem | gricsymb 48046 | Graph isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Proof shortened by AV, 3-May-2025.) |
| ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑔𝑟 𝐴)) | ||
| Theorem | grictr 48047 | Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.) |
| ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) | ||
| Theorem | gricer 48048 | Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| ⊢ ( ≃𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
| Theorem | gricen 48049 | Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025.) |
| ⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | opstrgric 48050 | A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.) |
| ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) | ||
| Theorem | ushggricedg 48051 | A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐻 = 〈𝑉, ( I ↾ 𝐸)〉 ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐺 ≃𝑔𝑟 𝐻) | ||
| Theorem | cycldlenngric 48052* | Two simple pseudographs are not isomorphic if one has a cycle and the other has no cycle of the same length. (Contributed by AV, 6-Nov-2025.) |
| ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) | ||
| Theorem | isubgrgrim 48053* | Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) ∧ (𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊)) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
| Theorem | uhgrimisgrgriclem 48054* | Lemma for uhgrimisgrgric 48055. (Contributed by AV, 31-May-2025.) |
| ⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) ↔ ∃𝑘 ∈ 𝐴 ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽))) | ||
| Theorem | uhgrimisgrgric 48055 | For isomorphic hypergraphs, the induced subgraph of a subset of vertices of one graph is isomorphic to the subgraph induced by the image of the subset. (Contributed by AV, 31-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝑁 ⊆ 𝑉) → (𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr (𝐹 “ 𝑁))) | ||
| Theorem | clnbgrisubgrgrim 48056* | Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑌) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇) → ((𝐺 ISubGr 𝑁) ≃𝑔𝑟 (𝐻 ISubGr 𝑀) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
| Theorem | clnbgrgrimlem 48057* | Lemma for clnbgrgrim 48058: For two isomorphic hypergraphs, if there is an edge connecting the image of a vertex of the first graph with a vertex of the second graph, the vertex of the second graph is the image of a neighbor of the vertex of the first graph. (Contributed by AV, 2-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐸 = (Edg‘𝐻) ⇒ ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊)) → ((𝐾 ∈ 𝐸 ∧ {(𝐹‘𝑋), 𝑌} ⊆ 𝐾) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑌)) | ||
| Theorem | clnbgrgrim 48058 | Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝐻 ClNeighbVtx (𝐹‘𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋))) | ||
| Theorem | grimedg 48059 | For two isomorphic graphs, a set of vertices is an edge in one graph iff its image by a graph isomorphism is an edge of the other graph. (Contributed by AV, 7-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) | ||
| Theorem | grimedgi 48060 | Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾 ∈ 𝐼 → (𝐹 “ 𝐾) ∈ 𝐸)) | ||
Usually, a "triangle" in graph theory is a complete graph consisting of three vertices (denoted by " K3 "), see the definition in [Diestel] p. 3 or the definition in [Bollobas] p. 5. This corresponds to the definition of a "triangle graph" (which is a more precise term) in Wikipedia "Triangle graph", https://en.wikipedia.org/wiki/Triangle_graph, 27-Jul-2025: "In the mathematical field of graph theory, the triangle graph is a planar undirected graph with 3 vertices and 3 edges, in the form of a triangle. The triangle graph is also known as the cycle graph C3 and the complete graph K3." Often, however, the term "triangle" is also used to denote a corresponding subgraph of a given graph ("triangle in a graph"), see, for example, Wikipedia "Triangle-free graph", 28-Jul-2025, https://en.wikipedia.org/wiki/Triangle-free_graph: "In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges." In this subsection, a triangle (in a graph) is defined as a set of three vertices of a given graph. In this meaning, a triangle 𝑇 with (𝑇 ∈ (GrTriangles‘𝐺)) is neither a graph nor a subgraph, but it induces a triangle graph (𝐺 ISubGr 𝑇) as subgraph of the given graph 𝐺. We require that there are three (different) edges connecting the three (different) vertices of the triangle. Therefore, it is not sufficient for arbitrary hypergraphs to say "a triangle is a set of three (different) vertices connected with each other (by edges)", because there might be only one or two multiedges fulfilling this statement. We do not regard such degenerate cases as "triangle". The definition df-grtri 48062 is designed for a special purpose, namely to provide a criterion for two graphs being not isomorphic (see grimgrtri 48073). For other purposes, a more general definition might be useful, e.g., ComplSubGr = (𝑔 ∈ V, 𝑛 ∈ ℕ ↦ {𝑡 ∈ 𝒫 𝑣 ∣ ((♯‘𝑡) = 𝑛 ∧ (𝑔 ISubGr 𝑡) ∈ ComplGraph)}) for complete subgraphs of a given size (proposed by TA). With such a definition, we would have (GrTriangles‘𝐺) = (𝐺 ComplSubGr 3) (at least for simple graphs), and the definition df-grtri 48062 may become obsolete. | ||
| Syntax | cgrtri 48061 | Extend class notation with triangles (in a graph). |
| class GrTriangles | ||
| Definition | df-grtri 48062* | Definition of a triangles in a graph. A triangle in a graph is a set of three (different) vertices completely connected with each other. Such vertices induce a closed walk of length 3, see grtriclwlk3 48069, and the vertices of a cycle of size 3 are a triangle in a graph, see cycl3grtri 48071. (Contributed by AV, 20-Jul-2025.) |
| ⊢ GrTriangles = (𝑔 ∈ V ↦ ⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) | ||
| Theorem | grtriproplem 48063 | Lemma for grtriprop 48065. (Contributed by AV, 23-Jul-2025.) |
| ⊢ ((𝑓:(0..^3)–1-1-onto→{𝑥, 𝑦, 𝑧} ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸)) | ||
| Theorem | grtri 48064* | The triangles in a graph. (Contributed by AV, 20-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (GrTriangles‘𝐺) = {𝑡 ∈ 𝒫 𝑉 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝐸 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝐸 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝐸))}) | ||
| Theorem | grtriprop 48065* | The properties of a triangle. (Contributed by AV, 25-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | ||
| Theorem | grtrif1o 48066 | Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto→𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)) | ||
| Theorem | isgrtri 48067* | A triangle in a graph. (Contributed by AV, 20-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | ||
| Theorem | grtrissvtx 48068 | A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇 ⊆ 𝑉) | ||
| Theorem | grtriclwlk3 48069 | A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025.) |
| ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) & ⊢ (𝜑 → 𝑃:(0..^3)–1-1-onto→𝑇) ⇒ ⊢ (𝜑 → 𝑃 ∈ (3 ClWWalksN 𝐺)) | ||
| Theorem | cycl3grtrilem 48070 | Lemma for cycl3grtri 48071. (Contributed by AV, 5-Oct-2025.) |
| ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) | ||
| Theorem | cycl3grtri 48071 | The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) & ⊢ (𝜑 → (♯‘𝐹) = 3) ⇒ ⊢ (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)) | ||
| Theorem | grtrimap 48072 | Conditions for mapping triangles onto triangles. Lemma for grimgrtri 48073 and grlimgrtri 48127. (Contributed by AV, 23-Aug-2025.) |
| ⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3))) | ||
| Theorem | grimgrtri 48073 | Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025.) (Proof shortened by AV, 24-Aug-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphIso 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) ⇒ ⊢ (𝜑 → (𝐹 “ 𝑇) ∈ (GrTriangles‘𝐻)) | ||
| Theorem | usgrgrtrirex 48074* | Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑎) ⇒ ⊢ (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) | ||
According to Wikipedia "Star (graph theory)", 10-Sep-2025, https://en.wikipedia.org/wiki/Star_(graph_theory): "In graph theory, the star Sk is the complete bipartite graph K(1,k), that is, it is a tree with one internal node and k leaves. Alternatively, some authors define Sk to be the tree of order k with maximum diameter 2, in which case a star of k > 2 has k - 1 leaves.". | ||
| Syntax | cstgr 48075 | Extend class notation with star graphs. |
| class StarGr | ||
| Definition | df-stgr 48076* | Definition of star graphs according to the first definition in Wikipedia, so that (StarGr‘𝑁) has size 𝑁, and order 𝑁 + 1: (StarGr‘0) will be a single vertex (graph without edges), see stgr0 48084, (StarGr‘1) will be a single edge (graph with two vertices connected by an edge), see stgr1 48085, and (StarGr‘3) will be a 3-star or "claw" (a star with 3 edges). (Contributed by AV, 10-Sep-2025.) |
| ⊢ StarGr = (𝑛 ∈ ℕ0 ↦ {〈(Base‘ndx), (0...𝑛)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})〉}) | ||
| Theorem | stgrfv 48077* | The star graph SN. (Contributed by AV, 10-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {〈(Base‘ndx), (0...𝑁)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})〉}) | ||
| Theorem | stgrvtx 48078 | The vertices of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁)) | ||
| Theorem | stgriedg 48079* | The indexed edges of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})) | ||
| Theorem | stgredg 48080* | The edges of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) | ||
| Theorem | stgredgel 48081* | An edge of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥}))) | ||
| Theorem | stgredgiun 48082* | The edges of the star graph SN as indexed union. (Contributed by AV, 29-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) | ||
| Theorem | stgrusgra 48083 | The star graph SN is a simple graph. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph) | ||
| Theorem | stgr0 48084 | The star graph S0 consists of a single vertex without edges. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (StarGr‘0) = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} | ||
| Theorem | stgr1 48085 | The star graph S1 consists of a single simple edge. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (StarGr‘1) = {〈(Base‘ndx), {0, 1}〉, 〈(.ef‘ndx), ( I ↾ {{0, 1}})〉} | ||
| Theorem | stgrvtx0 48086 | The center ("internal node") of a star graph SN. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑉) | ||
| Theorem | stgrorder 48087 | The order of a star graph SN. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (♯‘𝑉) = (𝑁 + 1)) | ||
| Theorem | stgrnbgr0 48088 | All vertices of a star graph SN except the center are in the (open) neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) | ||
| Theorem | stgrclnbgr0 48089 | All vertices of a star graph SN are in the closed neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐺 ClNeighbVtx 0) = 𝑉) | ||
| Theorem | isubgr3stgrlem1 48090 | Lemma 1 for isubgr3stgr 48099. (Contributed by AV, 16-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝐹 = (𝐻 ∪ {〈𝑋, 𝑌〉}) ⇒ ⊢ ((𝐻:𝑈–1-1-onto→𝑅 ∧ 𝑋 ∈ 𝑉 ∧ (𝑌 ∈ 𝑊 ∧ 𝑌 ∉ 𝑅)) → 𝐹:𝐶–1-1-onto→(𝑅 ∪ {𝑌})) | ||
| Theorem | isubgr3stgrlem2 48091* | Lemma 2 for isubgr3stgr 48099. (Contributed by AV, 16-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) | ||
| Theorem | isubgr3stgrlem3 48092* | Lemma 3 for isubgr3stgr 48099. (Contributed by AV, 17-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑔(𝑔:𝐶–1-1-onto→𝑊 ∧ (𝑔‘𝑋) = 0)) | ||
| Theorem | isubgr3stgrlem4 48093* | Lemma 4 for isubgr3stgr 48099. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 = 𝑋 ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧}) | ||
| Theorem | isubgr3stgrlem5 48094* | Lemma 5 for isubgr3stgr 48099. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) | ||
| Theorem | isubgr3stgrlem6 48095* | Lemma 6 for isubgr3stgr 48099. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁))) | ||
| Theorem | isubgr3stgrlem7 48096* | Lemma 7 for isubgr3stgr 48099. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (◡𝐹 “ 𝐽) ∈ 𝐼) | ||
| Theorem | isubgr3stgrlem8 48097* | Lemma 8 for isubgr3stgr 48099. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) | ||
| Theorem | isubgr3stgrlem9 48098* | Lemma 9 for isubgr3stgr 48099. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) | ||
| Theorem | isubgr3stgr 48099* | If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))) | ||
This section is about local isomorphisms of graphs, which are a generalization of isomorphisms of graphs, i.e., every isomorphism between two graphs is also a local isomorphism between these graphs, see uhgrimgrlim 48111. This definition is according to a chat in mathoverflow (https://mathoverflow.net/questions/491133/locally-isomorphic-graphs 48111): roughly speaking, it restricts the correspondence of two graphs to their neighborhoods. Additionally, a binary relation ≃𝑙𝑔𝑟 is defined (see df-grlic 48105) which is true for two graphs iff there is a local isomorphism between these graphs. Then these graphs are called "locally isomorphic". Therefore, this relation is also called "is locally isomorphic to" relation. As a main result of this section, it is shown that the "is locally isomorphic to" relation is an equivalence relation (for hypergraphs), see grlicer 48140. The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19173) and graph isomorphisms GraphIso (see df-grim 48002) resp. isomorphism between groups ≃𝑔 (see df-gic 19174) and isomorphism between graphs ≃𝑔𝑟 (see df-gric 48005). As discussed in the above mentioned chat in mathoverflow, it is shown that there are local isomorphisms between two graphs which are not (ordinary) isomorphisms between these graphs. In other words, there are two different locally isomorphic graphs which are not isomorphic, see lgricngricex 48253. Such two graphs are the two generalized Petersen graphs G(5,K) of order 10 (see definition df-gpg 48165), which are the Petersen graph G(5,2) and the 5-prism G(5,1), see gpg5ngric 48252. | ||
| Syntax | cgrlim 48100 | The class of graph local isomorphism sets. |
| class GraphLocIso | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |