| Metamath
Proof Explorer Theorem List (p. 481 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grlicer 48001 | Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
| ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
| Theorem | grlicen 48002 | Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
| ⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | gricgrlic 48003 | Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) | ||
| Theorem | clnbgr3stgrgrlim 48004* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then any bijection between the vertices is a local isomorphism between the two graphs. (Contributed by AV, 28-Dec-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | ||
| Theorem | clnbgr3stgrgrlic 48005* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉 ≈ 𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | ||
| Theorem | usgrexmpl1lem 48006* | Lemma for usgrexmpl1 48007. (Contributed by AV, 2-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl1 48007 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl1vtx 48008 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl1edg 48009 | The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | ||
| Theorem | usgrexmpl1tri 48010 | 𝐺 contains a triangle 0, 1, 2, with corresponding edges {0, 1}, {1, 2}, {0, 2}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl2lem 48011* | Lemma for usgrexmpl2 48012. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl2 48012 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl2vtx 48013 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl2edg 48014 | The edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) | ||
| Theorem | usgrexmpl2nblem 48015* | Lemma for usgrexmpl2nb0 48016 etc. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐾 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {𝐾, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) | ||
| Theorem | usgrexmpl2nb0 48016 | The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 0) = {1, 3, 5} | ||
| Theorem | usgrexmpl2nb1 48017 | The neighborhood of the second vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 1) = {0, 2} | ||
| Theorem | usgrexmpl2nb2 48018 | The neighborhood of the third vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 2) = {1, 3} | ||
| Theorem | usgrexmpl2nb3 48019 | The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 3) = {0, 2, 4} | ||
| Theorem | usgrexmpl2nb4 48020 | The neighborhood of the fifth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 4) = {3, 5} | ||
| Theorem | usgrexmpl2nb5 48021 | The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 5) = {0, 4} | ||
| Theorem | usgrexmpl2trifr 48022* | 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl12ngric 48023 | The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48010, whereas 𝐺 does not, see usgrexmpl2trifr 48022. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 | ||
| Theorem | usgrexmpl12ngrlic 48024 | The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48010, whereas 𝐺 does not, see usgrexmpl2trifr 48022. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 | ||
According to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph: "In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. ... Among the generalized Petersen graphs are the n-prism, ...". The vertices of the regular polygon are called "outside vertices", the vertices of the star polygon "inside vertices" (see A. Steimle, W. Stanton, "The isomorphism classes of the generalized Petersen graphs", Discrete Mathematics Volume 309, Issue 1, 6 January 2009, Pages 231-237: https://doi.org/10.1016/j.disc.2007.12.074). Since regular polygons are also considered as star polygons (with density 1), many theorems for "inside vertices" (with labels containing the fragment "vtx1") can be specialized for "outside vertices" (with labels containing the fragment "vtx0"). | ||
| Syntax | cgpg 48025 | Extend class notation with generalized Petersen graphs. |
| class gPetersenGr | ||
| Definition | df-gpg 48026* |
Definition of generalized Petersen graphs according to Wikipedia
"Generalized Petersen graph", 26-Aug-2025,
https://en.wikipedia.org/wiki/Generalized_Petersen_graph:
"In
Watkins' notation, 𝐺(𝑛, 𝑘) is a graph with vertex set {
u0,
u1, ... , un-1, v0, v1, ... , vn-1 } and
edge set { ui ui+1 , ui
vi , vi vi+k | 0 ≤ 𝑖 ≤
(𝑛 − 1) }
where subscripts are to be
read modulo n and where 𝑘 < (𝑛 / 2). Some authors use the
notation GPG(n,k)."
Instead of 𝑛 ∈ ℕ, we could restrict the first argument to 𝑛 ∈ (ℤ≥‘3) (i.e., 3 ≤ 𝑛), because for 𝑛 ≤ 2, the definition is not meaningful (since then (⌈‘(𝑛 / 2)) ≤ 1 and therefore (1..^(⌈‘(𝑛 / 2))) = ∅, so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025.) |
| ⊢ gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) | ||
| Theorem | gpgov 48027* | The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) = {〈(Base‘ndx), ({0, 1} × 𝐼)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})〉}) | ||
| Theorem | gpgvtx 48028 | The vertices of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) | ||
| Theorem | gpgiedg 48029* | The indexed edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) | ||
| Theorem | gpgedg 48030* | The edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) | ||
| Theorem | gpgiedgdmellem 48031* | Lemma for gpgiedgdmel 48034 and gpgedgel 48035. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) | ||
| Theorem | gpgvtxel 48032* | A vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ 𝐼 𝑋 = 〈𝑥, 𝑦〉)) | ||
| Theorem | gpgvtxel2 48033 | The second component of a vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ 𝐼) | ||
| Theorem | gpgiedgdmel 48034* | An index of edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgedgel 48035* | An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmel 48036* | An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmss 48037 | A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ({{〈0, 0〉, 〈0, 1〉}, {〈0, 0〉, 〈1, 0〉}} ∪ {{〈1, 1〉, 〈0, 1〉}, {〈1, 1〉, 〈1, 0〉}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) | ||
| Theorem | gpgvtx0 48038 | The outside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | gpgvtx1 48039 | The inside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | opgpgvtx 48040 | A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) | ||
| Theorem | gpgusgralem 48041* | Lemma for gpgusgra 48042. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × 𝐼) ∣ (♯‘𝑝) = 2}) | ||
| Theorem | gpgusgra 48042 | The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) | ||
| Theorem | gpgprismgrusgra 48043 | The generalized Petersen graphs G(N,1), which are the N-prisms, are simple graphs. (Contributed by AV, 31-Oct-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | ||
| Theorem | gpgorder 48044 | The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) | ||
| Theorem | gpg5order 48045 | The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025.) |
| ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) | ||
| Theorem | gpgedgvtx0 48046 | The edges starting at an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgedgvtx1 48047 | The edges starting at an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgvtxedg0 48048 | The edges starting at an outside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑌 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) | ||
| Theorem | gpgvtxedg1 48049 | The edges starting at an inside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑌 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) | ||
| Theorem | gpgedgiov 48050 | The edges of the generalized Petersen graph GPG(N,K) between an inside and an outside vertex. (Contributed by AV, 11-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → ({〈0, 𝑋〉, 〈1, 𝑌〉} ∈ 𝐸 ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2ov 48051 | The edges of the generalized Petersen graph GPG(N,K) between two outside vertices. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘5) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (({〈0, ((𝑌 − 1) mod 𝑁)〉, 〈0, 𝑋〉} ∈ 𝐸 ∧ {〈0, 𝑋〉, 〈0, ((𝑌 + 1) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2iv 48052 | The edges of the generalized Petersen graph GPG(N,K) between two inside vertices. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ (𝐾 ∈ 𝐽 ∧ ((4 · 𝐾) mod 𝑁) ≠ 0)) → (({〈1, ((𝑌 − 𝐾) mod 𝑁)〉, 〈1, 𝑋〉} ∈ 𝐸 ∧ {〈1, 𝑋〉, 〈1, ((𝑌 + 𝐾) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpg5nbgrvtx03starlem1 48053 | Lemma 1 for gpg5nbgrvtx03star 48065. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈1, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem2 48054 | Lemma 2 for gpg5nbgrvtx03star 48065. (Contributed by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ ℤ) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem3 48055 | Lemma 3 for gpg5nbgrvtx03star 48065. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈1, 𝑋〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem1 48056 | Lemma 1 for gpg5nbgr3star 48066. (Contributed by AV, 7-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑊) → {〈1, ((𝑋 + 𝐾) mod 𝑁)〉, 〈0, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem2 48057 | Lemma 2 for gpg5nbgr3star 48066. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ ℤ) → {〈1, ((𝑋 + 𝐾) mod 𝑁)〉, 〈1, ((𝑋 − 𝐾) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem3 48058 | Lemma 3 for gpg5nbgr3star 48066. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑊) → {〈0, 𝑋〉, 〈1, ((𝑋 − 𝐾) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpgnbgrvtx0 48059 | The (open) neighborhood of an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉}) | ||
| Theorem | gpgnbgrvtx1 48060 | The (open) neighborhood of an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉}) | ||
| Theorem | gpg3nbgrvtx0 48061 | In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx0ALT 48062 |
In a generalized Petersen graph 𝐺, every outside vertex has exactly
three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
The proof of gpg3nbgrvtx0 48061 can be shortened using modmknepk 47347, but then theorem 2ltceilhalf 47313 is required which is based on an "example" ex-ceil 30410. If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx1 48063 | In a generalized Petersen graph 𝐺, every inside vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) | ||
| Theorem | gpgcubic 48064 | Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48067), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) | ||
| Theorem | gpg5nbgrvtx03star 48065* | In a generalized Petersen graph G(N,K) of order greater than 8 (3 < 𝑁), every outside vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every outside vertex induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpg5nbgr3star 48066* | In a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles, see gpg3kgrtriex 48074. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpgvtxdg3 48067 | Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) | ||
| Theorem | gpg3kgrtriexlem1 48068 | Lemma 1 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | ||
| Theorem | gpg3kgrtriexlem2 48069 | Lemma 2 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem3 48070 | Lemma 3 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ≥‘3)) | ||
| Theorem | gpg3kgrtriexlem4 48071 | Lemma 4 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) | ||
| Theorem | gpg3kgrtriexlem5 48072 | Lemma 5 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem6 48073 | Lemma 6 for gpg3kgrtriex 48074: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} ⇒ ⊢ (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺)) | ||
| Theorem | gpg3kgrtriex 48074* | All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | ||
| Theorem | gpg5gricstgr3 48075 | Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 𝐾) ⇒ ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) | ||
| Theorem | pglem 48076 | Lemma for theorems about Petersen graphs. (Contributed by AV, 10-Nov-2025.) |
| ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | ||
| Theorem | pgjsgr 48077 | A Petersen graph is a simple graph. (Contributed by AV, 10-Nov-2025.) |
| ⊢ (5 gPetersenGr 2) ∈ USGraph | ||
| Theorem | gpg5grlim 48078 | A local isomorphism between the two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1). (Contributed by AV, 28-Dec-2025.) |
| ⊢ ( I ↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr 2)) | ||
| Theorem | gpg5grlic 48079 | The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) | ||
| Theorem | gpgprismgr4cycllem1 48080 | Lemma 1 for gpgprismgr4cycl0 48091: the cycle 〈𝑃, 𝐹〉 consists of 4 edges (i.e., has length 4). (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ (♯‘𝐹) = 4 | ||
| Theorem | gpgprismgr4cycllem2 48081 | Lemma 2 for gpgprismgr4cycl0 48091: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping edges. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ Fun ◡𝐹 | ||
| Theorem | gpgprismgr4cycllem3 48082* | Lemma 3 for gpgprismgr4cycl0 48091. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^4)) → ((𝐹‘𝑋) ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∧ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgr4cycllem4 48083 | Lemma 4 for gpgprismgr4cycl0 48091: the cycle 〈𝑃, 𝐹〉 consists of 5 vertices (the first and the last vertex are identical, see gpgprismgr4cycllem6 48085. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (♯‘𝑃) = 5 | ||
| Theorem | gpgprismgr4cycllem5 48084 | Lemma 5 for gpgprismgr4cycl0 48091. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ 𝑃 ∈ Word V | ||
| Theorem | gpgprismgr4cycllem6 48085 | Lemma 6 for gpgprismgr4cycl0 48091: the cycle 〈𝑃, 𝐹〉 is closed, i.e., the first and the last vertex are identical. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (𝑃‘0) = (𝑃‘4) | ||
| Theorem | gpgprismgr4cycllem7 48086 | Lemma 7 for gpgprismgr4cycl0 48091: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping vertices, except the first and the last one. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ ((𝑋 ∈ (0..^(♯‘𝑃)) ∧ 𝑌 ∈ (1..^4)) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) | ||
| Theorem | gpgprismgr4cycllem8 48087 | Lemma 8 for gpgprismgr4cycl0 48091. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem9 48088 | Lemma 9 for gpgprismgr4cycl0 48091. (Contributed by AV, 3-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem10 48089 | Lemma 10 for gpgprismgr4cycl0 48091. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) | ||
| Theorem | gpgprismgr4cycllem11 48090 | Lemma 11 for gpgprismgr4cycl0 48091. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | gpgprismgr4cycl0 48091 | The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex 〈0, 0〉. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4)) | ||
| Theorem | gpgprismgr4cyclex 48092* | The generalized Petersen graphs G(N,1), which are the N-prisms, have (at least) one cycle of length 4. (Contributed by AV, 5-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | ||
| Theorem | pgnioedg1 48093 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg2 48094 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg3 48095 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg4 48096 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg5 48097 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 1) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem1 48098* | Lemma 1 for pgnbgreunbgr 48110. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐿 = 〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐿 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉) → ((𝐾 = 〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐾 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉) → ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈0, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉))))) | ||
| Theorem | pgnbgreunbgrlem2lem1 48099* | Lemma 1 for pgnbgreunbgrlem2 48102. (Contributed by AV, 16-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| Theorem | pgnbgreunbgrlem2lem2 48100* | Lemma 2 for pgnbgreunbgrlem2 48102. (Contributed by AV, 16-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((((𝐿 = 〈1, ((𝑦 − 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |