| Metamath
Proof Explorer Theorem List (p. 481 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brgrilci 48001 | Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐹 ∈ (𝑅 GraphLocIso 𝑆) → 𝑅 ≃𝑙𝑔𝑟 𝑆) | ||
| Theorem | grlicrel 48002 | The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025.) |
| ⊢ Rel ≃𝑙𝑔𝑟 | ||
| Theorem | grlicrcl 48003 | Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ≃𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | dfgrlic2 48004* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) | ||
| Theorem | grilcbri 48005* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) | ||
| Theorem | dfgrlic3 48006* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grilcbri2 48007* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑋)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grlicref 48008 | Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺) | ||
| Theorem | grlicsym 48009 | Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺)) | ||
| Theorem | grlicsymb 48010 | Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) | ||
| Theorem | grlictr 48011 | Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.) |
| ⊢ ((𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇) → 𝑅 ≃𝑙𝑔𝑟 𝑇) | ||
| Theorem | grlicer 48012 | Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
| ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
| Theorem | grlicen 48013 | Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
| ⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | gricgrlic 48014 | Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) | ||
| Theorem | clnbgr3stgrgrlic 48015* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉 ≈ 𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | ||
| Theorem | usgrexmpl1lem 48016* | Lemma for usgrexmpl1 48017. (Contributed by AV, 2-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl1 48017 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl1vtx 48018 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl1edg 48019 | The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | ||
| Theorem | usgrexmpl1tri 48020 | 𝐺 contains a triangle 0, 1, 2, with corresponding edges {0, 1}, {1, 2}, {0, 2}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl2lem 48021* | Lemma for usgrexmpl2 48022. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl2 48022 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl2vtx 48023 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl2edg 48024 | The edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) | ||
| Theorem | usgrexmpl2nblem 48025* | Lemma for usgrexmpl2nb0 48026 etc. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐾 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {𝐾, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) | ||
| Theorem | usgrexmpl2nb0 48026 | The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 0) = {1, 3, 5} | ||
| Theorem | usgrexmpl2nb1 48027 | The neighborhood of the second vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 1) = {0, 2} | ||
| Theorem | usgrexmpl2nb2 48028 | The neighborhood of the third vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 2) = {1, 3} | ||
| Theorem | usgrexmpl2nb3 48029 | The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 3) = {0, 2, 4} | ||
| Theorem | usgrexmpl2nb4 48030 | The neighborhood of the fifth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 4) = {3, 5} | ||
| Theorem | usgrexmpl2nb5 48031 | The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 5) = {0, 4} | ||
| Theorem | usgrexmpl2trifr 48032* | 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl12ngric 48033 | The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48020, whereas 𝐺 does not, see usgrexmpl2trifr 48032. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 | ||
| Theorem | usgrexmpl12ngrlic 48034 | The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48020, whereas 𝐺 does not, see usgrexmpl2trifr 48032. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 | ||
According to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph: "In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. ... Among the generalized Petersen graphs are the n-prism, ...". The vertices of the regular polygon are called "outside vertices", the vertices of the star polygon "inside vertices" (see A. Steimle, W. Stanton, "The isomorphism classes of the generalized Petersen graphs", Discrete Mathematics Volume 309, Issue 1, 6 January 2009, Pages 231-237: https://doi.org/10.1016/j.disc.2007.12.074). Since regular polygons are also considered as star polygons (with density 1), many theorems for "inside vertices" (with labels containing the fragment "vtx1") can be specialized for "outside vertices" (with labels containing the fragment "vtx0"). | ||
| Syntax | cgpg 48035 | Extend class notation with generalized Petersen graphs. |
| class gPetersenGr | ||
| Definition | df-gpg 48036* |
Definition of generalized Petersen graphs according to Wikipedia
"Generalized Petersen graph", 26-Aug-2025,
https://en.wikipedia.org/wiki/Generalized_Petersen_graph:
"In
Watkins' notation, 𝐺(𝑛, 𝑘) is a graph with vertex set {
u0,
u1, ... , un-1, v0, v1, ... , vn-1 } and
edge set { ui ui+1 , ui
vi , vi vi+k | 0 ≤ 𝑖 ≤
(𝑛 − 1) }
where subscripts are to be
read modulo n and where 𝑘 < (𝑛 / 2). Some authors use the
notation GPG(n,k)."
Instead of 𝑛 ∈ ℕ, we could restrict the first argument to 𝑛 ∈ (ℤ≥‘3) (i.e., 3 ≤ 𝑛), because for 𝑛 ≤ 2, the definition is not meaningful (since then (⌈‘(𝑛 / 2)) ≤ 1 and therefore (1..^(⌈‘(𝑛 / 2))) = ∅, so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025.) |
| ⊢ gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) | ||
| Theorem | gpgov 48037* | The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) = {〈(Base‘ndx), ({0, 1} × 𝐼)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})〉}) | ||
| Theorem | gpgvtx 48038 | The vertices of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) | ||
| Theorem | gpgiedg 48039* | The indexed edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) | ||
| Theorem | gpgedg 48040* | The edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) | ||
| Theorem | gpgiedgdmellem 48041* | Lemma for gpgiedgdmel 48044 and gpgedgel 48045. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) | ||
| Theorem | gpgvtxel 48042* | A vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ 𝐼 𝑋 = 〈𝑥, 𝑦〉)) | ||
| Theorem | gpgvtxel2 48043 | The second component of a vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ 𝐼) | ||
| Theorem | gpgiedgdmel 48044* | An index of edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgedgel 48045* | An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmel 48046* | An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmss 48047 | A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ({{〈0, 0〉, 〈0, 1〉}, {〈0, 0〉, 〈1, 0〉}} ∪ {{〈1, 1〉, 〈0, 1〉}, {〈1, 1〉, 〈1, 0〉}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) | ||
| Theorem | gpgvtx0 48048 | The outside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | gpgvtx1 48049 | The inside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | opgpgvtx 48050 | A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) | ||
| Theorem | gpgusgralem 48051* | Lemma for gpgusgra 48052. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × 𝐼) ∣ (♯‘𝑝) = 2}) | ||
| Theorem | gpgusgra 48052 | The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) | ||
| Theorem | gpgprismgrusgra 48053 | The generalized Petersen graphs G(N,1), which are the N-prisms, are simple graphs. (Contributed by AV, 31-Oct-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | ||
| Theorem | gpgorder 48054 | The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) | ||
| Theorem | gpg5order 48055 | The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025.) |
| ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) | ||
| Theorem | gpgedgvtx0 48056 | The edges starting at an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgedgvtx1 48057 | The edges starting at an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgvtxedg0 48058 | The edges starting at an outside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑌 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) | ||
| Theorem | gpgvtxedg1 48059 | The edges starting at an inside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑌 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) | ||
| Theorem | gpgedgiov 48060 | The edges of the generalized Petersen graph GPG(N,K) between an inside and an outside vertex. (Contributed by AV, 11-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → ({〈0, 𝑋〉, 〈1, 𝑌〉} ∈ 𝐸 ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2ov 48061 | The edges of the generalized Petersen graph GPG(N,K) between two outside vertices. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘5) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (({〈0, ((𝑌 − 1) mod 𝑁)〉, 〈0, 𝑋〉} ∈ 𝐸 ∧ {〈0, 𝑋〉, 〈0, ((𝑌 + 1) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2iv 48062 | The edges of the generalized Petersen graph GPG(N,K) between two inside vertices. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ (𝐾 ∈ 𝐽 ∧ ((4 · 𝐾) mod 𝑁) ≠ 0)) → (({〈1, ((𝑌 − 𝐾) mod 𝑁)〉, 〈1, 𝑋〉} ∈ 𝐸 ∧ {〈1, 𝑋〉, 〈1, ((𝑌 + 𝐾) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpg5nbgrvtx03starlem1 48063 | Lemma 1 for gpg5nbgrvtx03star 48075. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈1, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem2 48064 | Lemma 2 for gpg5nbgrvtx03star 48075. (Contributed by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ ℤ) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem3 48065 | Lemma 3 for gpg5nbgrvtx03star 48075. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈1, 𝑋〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem1 48066 | Lemma 1 for gpg5nbgr3star 48076. (Contributed by AV, 7-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑊) → {〈1, ((𝑋 + 𝐾) mod 𝑁)〉, 〈0, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem2 48067 | Lemma 2 for gpg5nbgr3star 48076. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ ℤ) → {〈1, ((𝑋 + 𝐾) mod 𝑁)〉, 〈1, ((𝑋 − 𝐾) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem3 48068 | Lemma 3 for gpg5nbgr3star 48076. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑊) → {〈0, 𝑋〉, 〈1, ((𝑋 − 𝐾) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpgnbgrvtx0 48069 | The (open) neighborhood of an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉}) | ||
| Theorem | gpgnbgrvtx1 48070 | The (open) neighborhood of an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉}) | ||
| Theorem | gpg3nbgrvtx0 48071 | In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx0ALT 48072 |
In a generalized Petersen graph 𝐺, every outside vertex has exactly
three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
The proof of gpg3nbgrvtx0 48071 can be shortened using modmknepk 47367, but then theorem 2ltceilhalf 47333 is required which is based on an "example" ex-ceil 30384. If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx1 48073 | In a generalized Petersen graph 𝐺, every inside vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) | ||
| Theorem | gpgcubic 48074 | Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48077), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) | ||
| Theorem | gpg5nbgrvtx03star 48075* | In a generalized Petersen graph G(N,K) of order greater than 8 (3 < 𝑁), every outside vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every outside vertex induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpg5nbgr3star 48076* | In a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Peterson graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles, see gpg3kgrtriex 48084. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpgvtxdg3 48077 | Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) | ||
| Theorem | gpg3kgrtriexlem1 48078 | Lemma 1 for gpg3kgrtriex 48084. (Contributed by AV, 1-Oct-2025.) |
| ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | ||
| Theorem | gpg3kgrtriexlem2 48079 | Lemma 2 for gpg3kgrtriex 48084. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem3 48080 | Lemma 3 for gpg3kgrtriex 48084. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ≥‘3)) | ||
| Theorem | gpg3kgrtriexlem4 48081 | Lemma 4 for gpg3kgrtriex 48084. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) | ||
| Theorem | gpg3kgrtriexlem5 48082 | Lemma 5 for gpg3kgrtriex 48084. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem6 48083 | Lemma 6 for gpg3kgrtriex 48084: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} ⇒ ⊢ (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺)) | ||
| Theorem | gpg3kgrtriex 48084* | All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | ||
| Theorem | gpg5gricstgr3 48085 | Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 𝐾) ⇒ ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) | ||
| Theorem | pglem 48086 | Lemma for theorems about Petersen graphs. (Contributed by AV, 10-Nov-2025.) |
| ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | ||
| Theorem | pgjsgr 48087 | A Petersen graph is a simple graph. (Contributed by AV, 10-Nov-2025.) |
| ⊢ (5 gPetersenGr 2) ∈ USGraph | ||
| Theorem | gpg5grlic 48088 | The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) | ||
| Theorem | gpgprismgr4cycllem1 48089 | Lemma 1 for gpgprismgr4cycl0 48100: the cycle 〈𝑃, 𝐹〉 consists of 4 edges (i.e., has length 4). (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ (♯‘𝐹) = 4 | ||
| Theorem | gpgprismgr4cycllem2 48090 | Lemma 2 for gpgprismgr4cycl0 48100: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping edges. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ Fun ◡𝐹 | ||
| Theorem | gpgprismgr4cycllem3 48091* | Lemma 3 for gpgprismgr4cycl0 48100. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^4)) → ((𝐹‘𝑋) ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∧ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgr4cycllem4 48092 | Lemma 4 for gpgprismgr4cycl0 48100: the cycle 〈𝑃, 𝐹〉 consists of 5 vertices (the first and the last vertex are identical, see gpgprismgr4cycllem6 48094. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (♯‘𝑃) = 5 | ||
| Theorem | gpgprismgr4cycllem5 48093 | Lemma 5 for gpgprismgr4cycl0 48100. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ 𝑃 ∈ Word V | ||
| Theorem | gpgprismgr4cycllem6 48094 | Lemma 6 for gpgprismgr4cycl0 48100: the cycle 〈𝑃, 𝐹〉 is closed, i.e., the first and the last vertex are identical. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (𝑃‘0) = (𝑃‘4) | ||
| Theorem | gpgprismgr4cycllem7 48095 | Lemma 7 for gpgprismgr4cycl0 48100: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping vertices, except the first and the last one. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ ((𝑋 ∈ (0..^(♯‘𝑃)) ∧ 𝑌 ∈ (1..^4)) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) | ||
| Theorem | gpgprismgr4cycllem8 48096 | Lemma 8 for gpgprismgr4cycl0 48100. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem9 48097 | Lemma 9 for gpgprismgr4cycl0 48100. (Contributed by AV, 3-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem10 48098 | Lemma 10 for gpgprismgr4cycl0 48100. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) | ||
| Theorem | gpgprismgr4cycllem11 48099 | Lemma 11 for gpgprismgr4cycl0 48100. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | gpgprismgr4cycl0 48100 | The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex 〈0, 0〉. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |