| Metamath
Proof Explorer Theorem List (p. 481 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grilcbri 48001* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) | ||
| Theorem | dfgrlic3 48002* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grilcbri2 48003* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑋)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grlicref 48004 | Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺) | ||
| Theorem | grlicsym 48005 | Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺)) | ||
| Theorem | grlicsymb 48006 | Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) | ||
| Theorem | grlictr 48007 | Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.) |
| ⊢ ((𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇) → 𝑅 ≃𝑙𝑔𝑟 𝑇) | ||
| Theorem | grlicer 48008 | Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
| ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
| Theorem | grlicen 48009 | Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
| ⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | gricgrlic 48010 | Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) | ||
| Theorem | clnbgr3stgrgrlic 48011* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉 ≈ 𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | ||
| Theorem | usgrexmpl1lem 48012* | Lemma for usgrexmpl1 48013. (Contributed by AV, 2-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl1 48013 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl1vtx 48014 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl1edg 48015 | The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | ||
| Theorem | usgrexmpl1tri 48016 | 𝐺 contains a triangle 0, 1, 2, with corresponding edges {0, 1}, {1, 2}, {0, 2}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl2lem 48017* | Lemma for usgrexmpl2 48018. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl2 48018 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl2vtx 48019 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl2edg 48020 | The edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) | ||
| Theorem | usgrexmpl2nblem 48021* | Lemma for usgrexmpl2nb0 48022 etc. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐾 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {𝐾, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) | ||
| Theorem | usgrexmpl2nb0 48022 | The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 0) = {1, 3, 5} | ||
| Theorem | usgrexmpl2nb1 48023 | The neighborhood of the second vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 1) = {0, 2} | ||
| Theorem | usgrexmpl2nb2 48024 | The neighborhood of the third vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 2) = {1, 3} | ||
| Theorem | usgrexmpl2nb3 48025 | The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 3) = {0, 2, 4} | ||
| Theorem | usgrexmpl2nb4 48026 | The neighborhood of the fifth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 4) = {3, 5} | ||
| Theorem | usgrexmpl2nb5 48027 | The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 5) = {0, 4} | ||
| Theorem | usgrexmpl2trifr 48028* | 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl12ngric 48029 | The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48016, whereas 𝐺 does not, see usgrexmpl2trifr 48028. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 | ||
| Theorem | usgrexmpl12ngrlic 48030 | The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48016, whereas 𝐺 does not, see usgrexmpl2trifr 48028. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 | ||
According to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph: "In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. ... Among the generalized Petersen graphs are the n-prism, ...". The vertices of the regular polygon are called "outside vertices", the vertices of the star polygon "inside vertices" (see A. Steimle, W. Stanton, "The isomorphism classes of the generalized Petersen graphs", Discrete Mathematics Volume 309, Issue 1, 6 January 2009, Pages 231-237: https://doi.org/10.1016/j.disc.2007.12.074). Since regular polygons are also considered as star polygons (with density 1), many theorems for "inside vertices" (with labels containing the fragment "vtx1") can be specialized for "outside vertices" (with labels containing the fragment "vtx0"). | ||
| Syntax | cgpg 48031 | Extend class notation with generalized Petersen graphs. |
| class gPetersenGr | ||
| Definition | df-gpg 48032* |
Definition of generalized Petersen graphs according to Wikipedia
"Generalized Petersen graph", 26-Aug-2025,
https://en.wikipedia.org/wiki/Generalized_Petersen_graph:
"In
Watkins' notation, 𝐺(𝑛, 𝑘) is a graph with vertex set {
u0,
u1, ... , un-1, v0, v1, ... , vn-1 } and
edge set { ui ui+1 , ui
vi , vi vi+k | 0 ≤ 𝑖 ≤
(𝑛 − 1) }
where subscripts are to be
read modulo n and where 𝑘 < (𝑛 / 2). Some authors use the
notation GPG(n,k)."
Instead of 𝑛 ∈ ℕ, we could restrict the first argument to 𝑛 ∈ (ℤ≥‘3) (i.e., 3 ≤ 𝑛), because for 𝑛 ≤ 2, the definition is not meaningful (since then (⌈‘(𝑛 / 2)) ≤ 1 and therefore (1..^(⌈‘(𝑛 / 2))) = ∅, so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025.) |
| ⊢ gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) | ||
| Theorem | gpgov 48033* | The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) = {〈(Base‘ndx), ({0, 1} × 𝐼)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})〉}) | ||
| Theorem | gpgvtx 48034 | The vertices of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) | ||
| Theorem | gpgiedg 48035* | The indexed edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) | ||
| Theorem | gpgedg 48036* | The edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) | ||
| Theorem | gpgiedgdmellem 48037* | Lemma for gpgiedgdmel 48040 and gpgedgel 48041. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) | ||
| Theorem | gpgvtxel 48038* | A vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ 𝐼 𝑋 = 〈𝑥, 𝑦〉)) | ||
| Theorem | gpgvtxel2 48039 | The second component of a vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ 𝐼) | ||
| Theorem | gpgiedgdmel 48040* | An index of edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgedgel 48041* | An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmel 48042* | An index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ dom (iEdg‘𝐺) ↔ ∃𝑥 ∈ 𝐼 (𝑋 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑋 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑋 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgriedgdmss 48043 | A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ({{〈0, 0〉, 〈0, 1〉}, {〈0, 0〉, 〈1, 0〉}} ∪ {{〈1, 1〉, 〈0, 1〉}, {〈1, 1〉, 〈1, 0〉}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) | ||
| Theorem | gpgvtx0 48044 | The outside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | gpgvtx1 48045 | The inside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∈ 𝑉 ∧ 〈1, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉 ∈ 𝑉)) | ||
| Theorem | opgpgvtx 48046 | A vertex in a generalized Petersen graph 𝐺 as ordered pair. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (〈𝑋, 𝑌〉 ∈ 𝑉 ↔ ((𝑋 = 0 ∨ 𝑋 = 1) ∧ 𝑌 ∈ 𝐼))) | ||
| Theorem | gpgusgralem 48047* | Lemma for gpgusgra 48048. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ⊆ {𝑝 ∈ 𝒫 ({0, 1} × 𝐼) ∣ (♯‘𝑝) = 2}) | ||
| Theorem | gpgusgra 48048 | The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) | ||
| Theorem | gpgprismgrusgra 48049 | The generalized Petersen graphs G(N,1), which are the N-prisms, are simple graphs. (Contributed by AV, 31-Oct-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | ||
| Theorem | gpgorder 48050 | The order of the generalized Petersen graph GPG(N,K). (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (♯‘(Vtx‘(𝑁 gPetersenGr 𝐾))) = (2 · 𝑁)) | ||
| Theorem | gpg5order 48051 | The order of a generalized Petersen graph G(5,K), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is 10. (Contributed by AV, 26-Aug-2025.) |
| ⊢ (𝐾 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 𝐾))) = ;10) | ||
| Theorem | gpgedgvtx0 48052 | The edges starting at an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgedgvtx1 48053 | The edges starting at an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({𝑋, 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸)) | ||
| Theorem | gpgvtxedg0 48054 | The edges starting at an outside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 0 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 ∨ 𝑌 = 〈1, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) | ||
| Theorem | gpgvtxedg1 48055 | The edges starting at an inside vertex 𝑋 in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (1st ‘𝑋) = 1 ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑌 = 〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉 ∨ 𝑌 = 〈0, (2nd ‘𝑋)〉 ∨ 𝑌 = 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉)) | ||
| Theorem | gpgedgiov 48056 | The edges of the generalized Petersen graph GPG(N,K) between an inside and an outside vertex. (Contributed by AV, 11-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → ({〈0, 𝑋〉, 〈1, 𝑌〉} ∈ 𝐸 ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2ov 48057 | The edges of the generalized Petersen graph GPG(N,K) between two outside vertices. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘5) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (({〈0, ((𝑌 − 1) mod 𝑁)〉, 〈0, 𝑋〉} ∈ 𝐸 ∧ {〈0, 𝑋〉, 〈0, ((𝑌 + 1) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpgedg2iv 48058 | The edges of the generalized Petersen graph GPG(N,K) between two inside vertices. (Contributed by AV, 20-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) ∧ (𝐾 ∈ 𝐽 ∧ ((4 · 𝐾) mod 𝑁) ≠ 0)) → (({〈1, ((𝑌 − 𝐾) mod 𝑁)〉, 〈1, 𝑋〉} ∈ 𝐸 ∧ {〈1, 𝑋〉, 〈1, ((𝑌 + 𝐾) mod 𝑁)〉} ∈ 𝐸) ↔ 𝑋 = 𝑌)) | ||
| Theorem | gpg5nbgrvtx03starlem1 48059 | Lemma 1 for gpg5nbgrvtx03star 48071. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈1, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem2 48060 | Lemma 2 for gpg5nbgrvtx03star 48071. (Contributed by AV, 6-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ ℤ) → {〈0, ((𝑋 + 1) mod 𝑁)〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx03starlem3 48061 | Lemma 3 for gpg5nbgrvtx03star 48071. (Contributed by AV, 5-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑊) → {〈1, 𝑋〉, 〈0, ((𝑋 − 1) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem1 48062 | Lemma 1 for gpg5nbgr3star 48072. (Contributed by AV, 7-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑊) → {〈1, ((𝑋 + 𝐾) mod 𝑁)〉, 〈0, 𝑋〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem2 48063 | Lemma 2 for gpg5nbgr3star 48072. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ ℤ) → {〈1, ((𝑋 + 𝐾) mod 𝑁)〉, 〈1, ((𝑋 − 𝐾) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpg5nbgrvtx13starlem3 48064 | Lemma 3 for gpg5nbgr3star 48072. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑊) → {〈0, 𝑋〉, 〈1, ((𝑋 − 𝐾) mod 𝑁)〉} ∉ 𝐸) | ||
| Theorem | gpgnbgrvtx0 48065 | The (open) neighborhood of an outside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 28-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉}) | ||
| Theorem | gpgnbgrvtx1 48066 | The (open) neighborhood of an inside vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 2-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉}) | ||
| Theorem | gpg3nbgrvtx0 48067 | In a generalized Petersen graph 𝐺, every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx0ALT 48068 |
In a generalized Petersen graph 𝐺, every outside vertex has exactly
three (different) neighbors. (Contributed by AV, 30-Aug-2025.)
The proof of gpg3nbgrvtx0 48067 can be shortened using modmknepk 47363, but then theorem 2ltceilhalf 47329 is required which is based on an "example" ex-ceil 30377. If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) | ||
| Theorem | gpg3nbgrvtx1 48069 | In a generalized Petersen graph 𝐺, every inside vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) | ||
| Theorem | gpgcubic 48070 | Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48073), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) | ||
| Theorem | gpg5nbgrvtx03star 48071* | In a generalized Petersen graph G(N,K) of order greater than 8 (3 < 𝑁), every outside vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every outside vertex induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpg5nbgr3star 48072* | In a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Peterson graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles, see gpg3kgrtriex 48080. (Contributed by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) | ||
| Theorem | gpgvtxdg3 48073 | Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) | ||
| Theorem | gpg3kgrtriexlem1 48074 | Lemma 1 for gpg3kgrtriex 48080. (Contributed by AV, 1-Oct-2025.) |
| ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | ||
| Theorem | gpg3kgrtriexlem2 48075 | Lemma 2 for gpg3kgrtriex 48080. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem3 48076 | Lemma 3 for gpg3kgrtriex 48080. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ≥‘3)) | ||
| Theorem | gpg3kgrtriexlem4 48077 | Lemma 4 for gpg3kgrtriex 48080. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) | ||
| Theorem | gpg3kgrtriexlem5 48078 | Lemma 5 for gpg3kgrtriex 48080. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) | ||
| Theorem | gpg3kgrtriexlem6 48079 | Lemma 6 for gpg3kgrtriex 48080: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} ⇒ ⊢ (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺)) | ||
| Theorem | gpg3kgrtriex 48080* | All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.) |
| ⊢ 𝑁 = (3 · 𝐾) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) ⇒ ⊢ (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | ||
| Theorem | gpg5gricstgr3 48081 | Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 𝐾) ⇒ ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) | ||
| Theorem | pglem 48082 | Lemma for theorems about Petersen graphs. (Contributed by AV, 10-Nov-2025.) |
| ⊢ 2 ∈ (1..^(⌈‘(5 / 2))) | ||
| Theorem | pgjsgr 48083 | A Petersen graph is a simple graph. (Contributed by AV, 10-Nov-2025.) |
| ⊢ (5 gPetersenGr 2) ∈ USGraph | ||
| Theorem | gpg5grlic 48084 | The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.) |
| ⊢ (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2) | ||
| Theorem | gpgprismgr4cycllem1 48085 | Lemma 1 for gpgprismgr4cycl0 48096: the cycle 〈𝑃, 𝐹〉 consists of 4 edges (i.e., has length 4). (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ (♯‘𝐹) = 4 | ||
| Theorem | gpgprismgr4cycllem2 48086 | Lemma 2 for gpgprismgr4cycl0 48096: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping edges. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ Fun ◡𝐹 | ||
| Theorem | gpgprismgr4cycllem3 48087* | Lemma 3 for gpgprismgr4cycl0 48096. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^4)) → ((𝐹‘𝑋) ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∧ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) | ||
| Theorem | gpgprismgr4cycllem4 48088 | Lemma 4 for gpgprismgr4cycl0 48096: the cycle 〈𝑃, 𝐹〉 consists of 5 vertices (the first and the last vertex are identical, see gpgprismgr4cycllem6 48090. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (♯‘𝑃) = 5 | ||
| Theorem | gpgprismgr4cycllem5 48089 | Lemma 5 for gpgprismgr4cycl0 48096. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ 𝑃 ∈ Word V | ||
| Theorem | gpgprismgr4cycllem6 48090 | Lemma 6 for gpgprismgr4cycl0 48096: the cycle 〈𝑃, 𝐹〉 is closed, i.e., the first and the last vertex are identical. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ (𝑃‘0) = (𝑃‘4) | ||
| Theorem | gpgprismgr4cycllem7 48091 | Lemma 7 for gpgprismgr4cycl0 48096: the cycle 〈𝑃, 𝐹〉 is proper, i.e., it has no overlapping vertices, except the first and the last one. (Contributed by AV, 1-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 ⇒ ⊢ ((𝑋 ∈ (0..^(♯‘𝑃)) ∧ 𝑌 ∈ (1..^4)) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) | ||
| Theorem | gpgprismgr4cycllem8 48092 | Lemma 8 for gpgprismgr4cycl0 48096. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem9 48093 | Lemma 9 for gpgprismgr4cycl0 48096. (Contributed by AV, 3-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) | ||
| Theorem | gpgprismgr4cycllem10 48094 | Lemma 10 for gpgprismgr4cycl0 48096. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) | ||
| Theorem | gpgprismgr4cycllem11 48095 | Lemma 11 for gpgprismgr4cycl0 48096. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | gpgprismgr4cycl0 48096 | The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex 〈0, 0〉. (Contributed by AV, 5-Nov-2025.) |
| ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 & ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 & ⊢ 𝐺 = (𝑁 gPetersenGr 1) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4)) | ||
| Theorem | gpgprismgr4cyclex 48097* | The generalized Petersen graphs G(N,1), which are the N-prisms, have (at least) one cycle of length 4. (Contributed by AV, 5-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑓(𝑓(Cycles‘(𝑁 gPetersenGr 1))𝑝 ∧ (♯‘𝑓) = 4)) | ||
| Theorem | pgnioedg1 48098 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg2 48099 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) | ||
| Theorem | pgnioedg3 48100 | An inside and an outside vertex not adjacent in a Petersen graph. (Contributed by AV, 21-Nov-2025.) |
| ⊢ 𝐺 = (5 gPetersenGr 2) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑦 ∈ (0..^5) → ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0, ((𝑦 − 1) mod 5)〉} ∈ 𝐸) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |