Detailed syntax breakdown of Definition df-gzext
Step | Hyp | Ref
| Expression |
1 | | cgze 33308 |
. 2
class
AxExt |
2 | | c2o 8261 |
. . . . . 6
class
2o |
3 | | c0 4253 |
. . . . . 6
class
∅ |
4 | | cgoe 33195 |
. . . . . 6
class
∈𝑔 |
5 | 2, 3, 4 | co 7255 |
. . . . 5
class
(2o∈𝑔∅) |
6 | | c1o 8260 |
. . . . . 6
class
1o |
7 | 2, 6, 4 | co 7255 |
. . . . 5
class
(2o∈𝑔1o) |
8 | | cgob 33298 |
. . . . 5
class
↔𝑔 |
9 | 5, 7, 8 | co 7255 |
. . . 4
class
((2o∈𝑔∅)
↔𝑔
(2o∈𝑔1o)) |
10 | 9, 2 | cgol 33197 |
. . 3
class
∀𝑔2o((2o∈𝑔∅)
↔𝑔
(2o∈𝑔1o)) |
11 | | cgoq 33299 |
. . . 4
class
=𝑔 |
12 | 3, 6, 11 | co 7255 |
. . 3
class
(∅=𝑔1o) |
13 | | cgoi 33296 |
. . 3
class
→𝑔 |
14 | 10, 12, 13 | co 7255 |
. 2
class
(∀𝑔2o((2o∈𝑔∅)
↔𝑔 (2o∈𝑔1o))
→𝑔 (∅=𝑔1o)) |
15 | 1, 14 | wceq 1539 |
1
wff AxExt =
(∀𝑔2o((2o∈𝑔∅)
↔𝑔 (2o∈𝑔1o))
→𝑔 (∅=𝑔1o)) |