Detailed syntax breakdown of Definition df-gzrep
Step | Hyp | Ref
| Expression |
1 | | cgzr 33409 |
. 2
class
AxRep |
2 | | vu |
. . 3
setvar 𝑢 |
3 | | com 7712 |
. . . 4
class
ω |
4 | | cfmla 33299 |
. . . 4
class
Fmla |
5 | 3, 4 | cfv 6433 |
. . 3
class
(Fmla‘ω) |
6 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑢 |
7 | | c1o 8290 |
. . . . . . . . 9
class
1o |
8 | 6, 7 | cgol 33297 |
. . . . . . . 8
class
∀𝑔1o𝑢 |
9 | | c2o 8291 |
. . . . . . . . 9
class
2o |
10 | | cgoq 33399 |
. . . . . . . . 9
class
=𝑔 |
11 | 9, 7, 10 | co 7275 |
. . . . . . . 8
class
(2o=𝑔1o) |
12 | | cgoi 33396 |
. . . . . . . 8
class
→𝑔 |
13 | 8, 11, 12 | co 7275 |
. . . . . . 7
class
(∀𝑔1o𝑢 →𝑔
(2o=𝑔1o)) |
14 | 13, 9 | cgol 33297 |
. . . . . 6
class
∀𝑔2o(∀𝑔1o𝑢 →𝑔
(2o=𝑔1o)) |
15 | 14, 7 | cgox 33400 |
. . . . 5
class
∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔
(2o=𝑔1o)) |
16 | | c3o 8292 |
. . . . 5
class
3o |
17 | 15, 16 | cgol 33297 |
. . . 4
class
∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) |
18 | | cgoe 33295 |
. . . . . . . 8
class
∈𝑔 |
19 | 9, 7, 18 | co 7275 |
. . . . . . 7
class
(2o∈𝑔1o) |
20 | | c0 4256 |
. . . . . . . . . 10
class
∅ |
21 | 16, 20, 18 | co 7275 |
. . . . . . . . 9
class
(3o∈𝑔∅) |
22 | | cgoa 33395 |
. . . . . . . . 9
class
∧𝑔 |
23 | 21, 8, 22 | co 7275 |
. . . . . . . 8
class
((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢) |
24 | 23, 16 | cgox 33400 |
. . . . . . 7
class
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢) |
25 | | cgob 33398 |
. . . . . . 7
class
↔𝑔 |
26 | 19, 24, 25 | co 7275 |
. . . . . 6
class
((2o∈𝑔1o)
↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)) |
27 | 26, 9 | cgol 33297 |
. . . . 5
class
∀𝑔2o((2o∈𝑔1o)
↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)) |
28 | 27, 7 | cgol 33297 |
. . . 4
class
∀𝑔1o∀𝑔2o((2o∈𝑔1o)
↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)) |
29 | 17, 28, 12 | co 7275 |
. . 3
class
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢))) |
30 | 2, 5, 29 | cmpt 5157 |
. 2
class (𝑢 ∈ (Fmla‘ω)
↦
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) |
31 | 1, 30 | wceq 1539 |
1
wff AxRep =
(𝑢 ∈
(Fmla‘ω) ↦
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) |