Detailed syntax breakdown of Definition df-gzrep
| Step | Hyp | Ref
| Expression |
| 1 | | cgzr 35452 |
. 2
class
AxRep |
| 2 | | vu |
. . 3
setvar 𝑢 |
| 3 | | com 7887 |
. . . 4
class
ω |
| 4 | | cfmla 35342 |
. . . 4
class
Fmla |
| 5 | 3, 4 | cfv 6561 |
. . 3
class
(Fmla‘ω) |
| 6 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑢 |
| 7 | | c1o 8499 |
. . . . . . . . 9
class
1o |
| 8 | 6, 7 | cgol 35340 |
. . . . . . . 8
class
∀𝑔1o𝑢 |
| 9 | | c2o 8500 |
. . . . . . . . 9
class
2o |
| 10 | | cgoq 35442 |
. . . . . . . . 9
class
=𝑔 |
| 11 | 9, 7, 10 | co 7431 |
. . . . . . . 8
class
(2o=𝑔1o) |
| 12 | | cgoi 35439 |
. . . . . . . 8
class
→𝑔 |
| 13 | 8, 11, 12 | co 7431 |
. . . . . . 7
class
(∀𝑔1o𝑢 →𝑔
(2o=𝑔1o)) |
| 14 | 13, 9 | cgol 35340 |
. . . . . 6
class
∀𝑔2o(∀𝑔1o𝑢 →𝑔
(2o=𝑔1o)) |
| 15 | 14, 7 | cgox 35443 |
. . . . 5
class
∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔
(2o=𝑔1o)) |
| 16 | | c3o 8501 |
. . . . 5
class
3o |
| 17 | 15, 16 | cgol 35340 |
. . . 4
class
∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) |
| 18 | | cgoe 35338 |
. . . . . . . 8
class
∈𝑔 |
| 19 | 9, 7, 18 | co 7431 |
. . . . . . 7
class
(2o∈𝑔1o) |
| 20 | | c0 4333 |
. . . . . . . . . 10
class
∅ |
| 21 | 16, 20, 18 | co 7431 |
. . . . . . . . 9
class
(3o∈𝑔∅) |
| 22 | | cgoa 35438 |
. . . . . . . . 9
class
∧𝑔 |
| 23 | 21, 8, 22 | co 7431 |
. . . . . . . 8
class
((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢) |
| 24 | 23, 16 | cgox 35443 |
. . . . . . 7
class
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢) |
| 25 | | cgob 35441 |
. . . . . . 7
class
↔𝑔 |
| 26 | 19, 24, 25 | co 7431 |
. . . . . 6
class
((2o∈𝑔1o)
↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)) |
| 27 | 26, 9 | cgol 35340 |
. . . . 5
class
∀𝑔2o((2o∈𝑔1o)
↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)) |
| 28 | 27, 7 | cgol 35340 |
. . . 4
class
∀𝑔1o∀𝑔2o((2o∈𝑔1o)
↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)) |
| 29 | 17, 28, 12 | co 7431 |
. . 3
class
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢))) |
| 30 | 2, 5, 29 | cmpt 5225 |
. 2
class (𝑢 ∈ (Fmla‘ω)
↦
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) |
| 31 | 1, 30 | wceq 1540 |
1
wff AxRep =
(𝑢 ∈
(Fmla‘ω) ↦
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) |