Detailed syntax breakdown of Definition df-gzf
| Step | Hyp | Ref
| Expression |
| 1 | | cgzf 35457 |
. 2
class ZF |
| 2 | | vm |
. . . . . . 7
setvar 𝑚 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑚 |
| 4 | 3 | wtr 5259 |
. . . . 5
wff Tr 𝑚 |
| 5 | | cgze 35451 |
. . . . . 6
class
AxExt |
| 6 | | cprv 35344 |
. . . . . 6
class
⊧ |
| 7 | 3, 5, 6 | wbr 5143 |
. . . . 5
wff 𝑚⊧AxExt |
| 8 | | cgzp 35453 |
. . . . . 6
class
AxPow |
| 9 | 3, 8, 6 | wbr 5143 |
. . . . 5
wff 𝑚⊧AxPow |
| 10 | 4, 7, 9 | w3a 1087 |
. . . 4
wff (Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) |
| 11 | | cgzu 35454 |
. . . . . 6
class
AxUn |
| 12 | 3, 11, 6 | wbr 5143 |
. . . . 5
wff 𝑚⊧AxUn |
| 13 | | cgzg 35455 |
. . . . . 6
class
AxReg |
| 14 | 3, 13, 6 | wbr 5143 |
. . . . 5
wff 𝑚⊧AxReg |
| 15 | | cgzi 35456 |
. . . . . 6
class
AxInf |
| 16 | 3, 15, 6 | wbr 5143 |
. . . . 5
wff 𝑚⊧AxInf |
| 17 | 12, 14, 16 | w3a 1087 |
. . . 4
wff (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) |
| 18 | | vu |
. . . . . . . 8
setvar 𝑢 |
| 19 | 18 | cv 1539 |
. . . . . . 7
class 𝑢 |
| 20 | | cgzr 35452 |
. . . . . . 7
class
AxRep |
| 21 | 19, 20 | cfv 6561 |
. . . . . 6
class
(AxRep‘𝑢) |
| 22 | 3, 21, 6 | wbr 5143 |
. . . . 5
wff 𝑚⊧(AxRep‘𝑢) |
| 23 | | com 7887 |
. . . . . 6
class
ω |
| 24 | | cfmla 35342 |
. . . . . 6
class
Fmla |
| 25 | 23, 24 | cfv 6561 |
. . . . 5
class
(Fmla‘ω) |
| 26 | 22, 18, 25 | wral 3061 |
. . . 4
wff
∀𝑢 ∈
(Fmla‘ω)𝑚⊧(AxRep‘𝑢) |
| 27 | 10, 17, 26 | w3a 1087 |
. . 3
wff ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈
(Fmla‘ω)𝑚⊧(AxRep‘𝑢)) |
| 28 | 27, 2 | cab 2714 |
. 2
class {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈
(Fmla‘ω)𝑚⊧(AxRep‘𝑢))} |
| 29 | 1, 28 | wceq 1540 |
1
wff ZF = {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈
(Fmla‘ω)𝑚⊧(AxRep‘𝑢))} |