Home | Metamath
Proof Explorer Theorem List (p. 345 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | btwnconn1lem4 34401 | Lemma for btwnconn1 34412. Assuming 𝐶 ≠ 𝑐, we now attempt to force 𝐷 = 𝑑 from here out via a series of congruences. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) | ||
Theorem | btwnconn1lem5 34402 | Lemma for btwnconn1 34412. Now, we introduce 𝐸, the intersection of 𝐶𝑐 and 𝐷𝑑. We begin by showing that it is the midpoint of 𝐶 and 𝑐. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉) | ||
Theorem | btwnconn1lem6 34403 | Lemma for btwnconn1 34412. Next, we show that 𝐸 is the midpoint of 𝐷 and 𝑑. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉) | ||
Theorem | btwnconn1lem7 34404 | Lemma for btwnconn1 34412. Under our assumptions, 𝐶 and 𝑑 are distinct. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 𝐶 ≠ 𝑑) | ||
Theorem | btwnconn1lem8 34405 | Lemma for btwnconn1 34412. Now, we introduce the last three points used in the construction: 𝑃, 𝑄, and 𝑅 will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of 𝑅𝑃 and 𝐸𝑑. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑅, 𝑃〉Cgr〈𝐸, 𝑑〉) | ||
Theorem | btwnconn1lem9 34406 | Lemma for btwnconn1 34412. Now, a quick use of transitivity to establish congruence on 𝑅𝑄 and 𝐸𝐷. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑅, 𝑄〉Cgr〈𝐸, 𝐷〉) | ||
Theorem | btwnconn1lem10 34407 | Lemma for btwnconn1 34412. Now we establish a congruence that will give us 𝐷 = 𝑑 when we compute 𝑃 = 𝑄 later on. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑑, 𝐷〉Cgr〈𝑃, 𝑄〉) | ||
Theorem | btwnconn1lem11 34408 | Lemma for btwnconn1 34412. Now, we establish that 𝐷 and 𝑄 are equidistant from 𝐶. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝐷, 𝐶〉Cgr〈𝑄, 𝐶〉) | ||
Theorem | btwnconn1lem12 34409 | Lemma for btwnconn1 34412. Using a long string of invocations of linecgr 34392, we show that 𝐷 = 𝑑. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 𝐷 = 𝑑) | ||
Theorem | btwnconn1lem13 34410 | Lemma for btwnconn1 34412. Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → (𝐶 = 𝑐 ∨ 𝐷 = 𝑑)) | ||
Theorem | btwnconn1lem14 34411 | Lemma for btwnconn1 34412. Final statement of the theorem when 𝐵 ≠ 𝐶. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉))) → (𝐶 Btwn 〈𝐴, 𝐷〉 ∨ 𝐷 Btwn 〈𝐴, 𝐶〉)) | ||
Theorem | btwnconn1 34412 | Connectitivy law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉) → (𝐶 Btwn 〈𝐴, 𝐷〉 ∨ 𝐷 Btwn 〈𝐴, 𝐶〉))) | ||
Theorem | btwnconn2 34413 | Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉) → (𝐶 Btwn 〈𝐵, 𝐷〉 ∨ 𝐷 Btwn 〈𝐵, 𝐶〉))) | ||
Theorem | btwnconn3 34414 | Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | ||
Theorem | midofsegid 34415 | If two points fall in the same place in the middle of a segment, then they are identical. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝐵〉 ∧ 𝐸 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐷〉Cgr〈𝐴, 𝐸〉) → 𝐷 = 𝐸)) | ||
Theorem | segcon2 34416* | Generalization of axsegcon 27304. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 27304, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn 〈𝑄, 𝑥〉 ∨ 𝑥 Btwn 〈𝑄, 𝐴〉) ∧ 〈𝑄, 𝑥〉Cgr〈𝐵, 𝐶〉)) | ||
Syntax | csegle 34417 | Declare the constant for the segment less than or equal to relationship. |
class Seg≤ | ||
Definition | df-segle 34418* | Define the segment length comparison relationship. This relationship expresses that the segment 𝐴𝐵 is no longer than 𝐶𝐷. In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ Seg≤ = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn 〈𝑐, 𝑑〉 ∧ 〈𝑎, 𝑏〉Cgr〈𝑐, 𝑦〉))} | ||
Theorem | brsegle 34419* | Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) | ||
Theorem | brsegle2 34420* | Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) | ||
Theorem | seglecgr12im 34421 | Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉) → 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉)) | ||
Theorem | seglecgr12 34422 | Substitution law for segment comparison under congruence. Biconditional version. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉))) | ||
Theorem | seglerflx 34423 | Segment comparison is reflexive. Theorem 5.7 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉) | ||
Theorem | seglemin 34424 | Any segment is at least as long as a degenerate segment. Theorem 5.11 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 𝐴〉 Seg≤ 〈𝐵, 𝐶〉) | ||
Theorem | segletr 34425 | Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉 Seg≤ 〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐸, 𝐹〉)) | ||
Theorem | segleantisym 34426 | Antisymmetry law for segment comparison. Theorem 5.9 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉 Seg≤ 〈𝐴, 𝐵〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
Theorem | seglelin 34427 | Linearity law for segment comparison. Theorem 5.10 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∨ 〈𝐶, 𝐷〉 Seg≤ 〈𝐴, 𝐵〉)) | ||
Theorem | btwnsegle 34428 | If 𝐵 falls between 𝐴 and 𝐶, then 𝐴𝐵 is no longer than 𝐴𝐶. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉)) | ||
Theorem | colinbtwnle 34429 | Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉 ∧ 〈𝐵, 𝐶〉 Seg≤ 〈𝐴, 𝐶〉)))) | ||
Syntax | coutsideof 34430 | Declare the syntax for the outside of constant. |
class OutsideOf | ||
Definition | df-outsideof 34431 | The outside of relationship. This relationship expresses that 𝑃, 𝐴, and 𝐵 fall on a line, but 𝑃 is not on the segment 𝐴𝐵. This definition is taken from theorem 6.4 of [Schwabhauser] p. 43, since it requires no dummy variables. (Contributed by Scott Fenton, 17-Oct-2013.) |
⊢ OutsideOf = ( Colinear ∖ Btwn ) | ||
Theorem | broutsideof 34432 | Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) | ||
Theorem | broutsideof2 34433 | Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ (𝐴 Btwn 〈𝑃, 𝐵〉 ∨ 𝐵 Btwn 〈𝑃, 𝐴〉)))) | ||
Theorem | outsidene1 34434 | Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → 𝐴 ≠ 𝑃)) | ||
Theorem | outsidene2 34435 | Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → 𝐵 ≠ 𝑃)) | ||
Theorem | btwnoutside 34436 | A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ 𝐶 ≠ 𝑃) ∧ 𝑃 Btwn 〈𝐴, 𝐶〉) → (𝑃 Btwn 〈𝐵, 𝐶〉 ↔ 𝑃OutsideOf〈𝐴, 𝐵〉))) | ||
Theorem | broutsideof3 34437* | Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐 ≠ 𝑃 ∧ 𝑃 Btwn 〈𝐴, 𝑐〉 ∧ 𝑃 Btwn 〈𝐵, 𝑐〉)))) | ||
Theorem | outsideofrflx 34438 | Reflexivity of outsideness. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐴 ≠ 𝑃 → 𝑃OutsideOf〈𝐴, 𝐴〉)) | ||
Theorem | outsideofcom 34439 | Commutativity law for outsideness. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ 𝑃OutsideOf〈𝐵, 𝐴〉)) | ||
Theorem | outsideoftr 34440 | Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf〈𝐴, 𝐵〉 ∧ 𝑃OutsideOf〈𝐵, 𝐶〉) → 𝑃OutsideOf〈𝐴, 𝐶〉)) | ||
Theorem | outsideofeq 34441 | Uniqueness law for OutsideOf. Analogue of segconeq 34321. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf〈𝑋, 𝑅〉 ∧ 〈𝐴, 𝑋〉Cgr〈𝐵, 𝐶〉) ∧ (𝐴OutsideOf〈𝑌, 𝑅〉 ∧ 〈𝐴, 𝑌〉Cgr〈𝐵, 𝐶〉)) → 𝑋 = 𝑌)) | ||
Theorem | outsideofeu 34442* | Given a nondegenerate ray, there is a unique point congruent to the segment 𝐵𝐶 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf〈𝑥, 𝑅〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐵, 𝐶〉))) | ||
Theorem | outsidele 34443 | Relate OutsideOf to Seg≤. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → (〈𝑃, 𝐴〉 Seg≤ 〈𝑃, 𝐵〉 ↔ 𝐴 Btwn 〈𝑃, 𝐵〉))) | ||
Theorem | outsideofcol 34444 | Outside of implies colinearity. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑃OutsideOf〈𝑄, 𝑅〉 → 𝑃 Colinear 〈𝑄, 𝑅〉) | ||
Syntax | cline2 34445 | Declare the constant for the line function. |
class Line | ||
Syntax | cray 34446 | Declare the constant for the ray function. |
class Ray | ||
Syntax | clines2 34447 | Declare the constant for the set of all lines. |
class LinesEE | ||
Definition | df-line2 34448* | Define the Line function. This function generates the line passing through the distinct points 𝑎 and 𝑏. Adapted from definition 6.14 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 25-Oct-2013.) |
⊢ Line = {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} | ||
Definition | df-ray 34449* | Define the Ray function. This function generates the set of all points that lie on the ray starting at 𝑝 and passing through 𝑎. Definition 6.8 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 21-Oct-2013.) |
⊢ Ray = {〈〈𝑝, 𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} | ||
Definition | df-lines2 34450 | Define the set of all lines. Definition 6.14, part 2 of [Schwabhauser] p. 45. See ellines 34463 for membership. (Contributed by Scott Fenton, 28-Oct-2013.) |
⊢ LinesEE = ran Line | ||
Theorem | funray 34451 | Show that the Ray relationship is a function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Fun Ray | ||
Theorem | fvray 34452* | Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf〈𝐴, 𝑥〉}) | ||
Theorem | funline 34453 | Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Fun Line | ||
Theorem | linedegen 34454 | When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴Line𝐴) = ∅ | ||
Theorem | fvline 34455* | Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → (𝐴Line𝐵) = {𝑥 ∣ 𝑥 Colinear 〈𝐴, 𝐵〉}) | ||
Theorem | liness 34456 | A line is a subset of the space its two points lie in. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → (𝐴Line𝐵) ⊆ (𝔼‘𝑁)) | ||
Theorem | fvline2 34457* | Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → (𝐴Line𝐵) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear 〈𝐴, 𝐵〉}) | ||
Theorem | lineunray 34458 | A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → (𝑃 Btwn 〈𝑄, 𝑅〉 → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)))) | ||
Theorem | lineelsb2 34459 | If 𝑆 lies on 𝑃𝑄, then 𝑃𝑄 = 𝑃𝑆. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆))) | ||
Theorem | linerflx1 34460 | Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (𝑃Line𝑄)) | ||
Theorem | linecom 34461 | Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → (𝑃Line𝑄) = (𝑄Line𝑃)) | ||
Theorem | linerflx2 34462 | Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (𝑃Line𝑄)) | ||
Theorem | ellines 34463* | Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞))) | ||
Theorem | linethru 34464 | If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ LinesEE ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐴 = (𝑃Line𝑄)) | ||
Theorem | hilbert1.1 34465* | There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
Theorem | hilbert1.2 34466* | There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by NM, 17-Jun-2017.) |
⊢ (𝑃 ≠ 𝑄 → ∃*𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
Theorem | linethrueu 34467* | There is a unique line going through any two distinct points. Theorem 6.19 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ≠ 𝑄)) → ∃!𝑥 ∈ LinesEE (𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
Theorem | lineintmo 34468* | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Syntax | cfwddif 34469 | Declare the syntax for the forward difference operator. |
class △ | ||
Definition | df-fwddif 34470* | Define the forward difference operator. This is a discrete analogue of the derivative operator. Definition 2.42 of [GramKnuthPat], p. 47. (Contributed by Scott Fenton, 18-May-2020.) |
⊢ △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)))) | ||
Syntax | cfwddifn 34471 | Declare the syntax for the nth forward difference operator. |
class
△ | ||
Definition | df-fwddifn 34472* | Define the nth forward difference operator. This works out to be the forward difference operator iterated 𝑛 times. (Contributed by Scott Fenton, 28-May-2020.) |
⊢
△ | ||
Theorem | fwddifval 34473 | Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → (𝑋 + 1) ∈ 𝐴) ⇒ ⊢ (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹‘𝑋))) | ||
Theorem | fwddifnval 34474* | The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑁 △ | ||
Theorem | fwddifn0 34475 | The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((0 △ | ||
Theorem | fwddifnp1 34476* | The value of the n-iterated forward difference at a successor. (Contributed by Scott Fenton, 28-May-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑋 + 𝑘) ∈ 𝐴) ⇒ ⊢ (𝜑 → (((𝑁 + 1) △ | ||
Theorem | rankung 34477 | The rank of the union of two sets. Closed form of rankun 9623. (Contributed by Scott Fenton, 15-Jul-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | ranksng 34478 | The rank of a singleton. Closed form of ranksn 9621. (Contributed by Scott Fenton, 15-Jul-2015.) |
⊢ (𝐴 ∈ 𝑉 → (rank‘{𝐴}) = suc (rank‘𝐴)) | ||
Theorem | rankelg 34479 | The membership relation is inherited by the rank function. Closed form of rankel 9606. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) | ||
Theorem | rankpwg 34480 | The rank of a power set. Closed form of rankpw 9610. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ (𝐴 ∈ 𝑉 → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) | ||
Theorem | rank0 34481 | The rank of the empty set is ∅. (Contributed by Scott Fenton, 17-Jul-2015.) |
⊢ (rank‘∅) = ∅ | ||
Theorem | rankeq1o 34482 | The only set with rank 1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.) |
⊢ ((rank‘𝐴) = 1o ↔ 𝐴 = {∅}) | ||
Syntax | chf 34483 | The constant Hf is a class. |
class Hf | ||
Definition | df-hf 34484 | Define the hereditarily finite sets. These are the finite sets whose elements are finite, and so forth. (Contributed by Scott Fenton, 9-Jul-2015.) |
⊢ Hf = ∪ (𝑅1 “ ω) | ||
Theorem | elhf 34485* | Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.) |
⊢ (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) | ||
Theorem | elhf2 34486 | Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω) | ||
Theorem | elhf2g 34487 | Hereditarily finiteness via rank. Closed form of elhf2 34486. (Contributed by Scott Fenton, 15-Jul-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | ||
Theorem | 0hf 34488 | The empty set is a hereditarily finite set. (Contributed by Scott Fenton, 9-Jul-2015.) |
⊢ ∅ ∈ Hf | ||
Theorem | hfun 34489 | The union of two HF sets is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.) |
⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 ∪ 𝐵) ∈ Hf ) | ||
Theorem | hfsn 34490 | The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015.) |
⊢ (𝐴 ∈ Hf → {𝐴} ∈ Hf ) | ||
Theorem | hfadj 34491 | Adjoining one HF element to an HF set preserves HF status. (Contributed by Scott Fenton, 15-Jul-2015.) |
⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 ∪ {𝐵}) ∈ Hf ) | ||
Theorem | hfelhf 34492 | Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝐴 ∈ Hf ) | ||
Theorem | hftr 34493 | The class of all hereditarily finite sets is transitive. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ Tr Hf | ||
Theorem | hfext 34494* | Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ ((𝐴 ∈ Hf ∧ 𝐵 ∈ Hf ) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ Hf (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | ||
Theorem | hfuni 34495 | The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) | ||
Theorem | hfpw 34496 | The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ (𝐴 ∈ Hf → 𝒫 𝐴 ∈ Hf ) | ||
Theorem | hfninf 34497 | ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
⊢ ¬ ω ∈ Hf | ||
Theorem | a1i14 34498 | Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
⊢ (𝜓 → (𝜒 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | a1i24 34499 | Add two antecedents to a wff. Deduction associated with a1i13 27. (Contributed by Jeff Hankins, 5-Aug-2009.) |
⊢ (𝜑 → (𝜒 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp5d 34500 | An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |