![]() |
Metamath
Proof Explorer Theorem List (p. 345 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28364) |
![]() (28365-29889) |
![]() (29890-43671) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rngohomadd 34401 | Ring homomorphisms preserve addition. (Contributed by Jeff Madsen, 3-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹‘𝐴)𝐽(𝐹‘𝐵))) | ||
Theorem | rngohommul 34402 | Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐾 = (2nd ‘𝑆) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) | ||
Theorem | rngogrphom 34403 | A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐽 = (1st ‘𝑆) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) | ||
Theorem | rngohom0 34404 | A ring homomorphism preserves 0. (Contributed by Jeff Madsen, 2-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑊 = (GId‘𝐽) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘𝑍) = 𝑊) | ||
Theorem | rngohomsub 34405 | Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐻 = ( /𝑔 ‘𝐺) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝐾 = ( /𝑔 ‘𝐽) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) | ||
Theorem | rngohomco 34406 | The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RngHom 𝑇)) | ||
Theorem | rngokerinj 34407 | A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = (GId‘𝐺) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 & ⊢ 𝑍 = (GId‘𝐽) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) | ||
Definition | df-rngoiso 34408* | Define the function which gives the set of ring isomorphisms between two given rings. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ RngIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)}) | ||
Theorem | rngoisoval 34409* | The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) | ||
Theorem | isrngoiso 34410 | The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) | ||
Theorem | rngoiso1o 34411 | A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) | ||
Theorem | rngoisohom 34412 | A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
Theorem | rngoisocnv 34413 | The inverse of a ring isomorphism is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → ◡𝐹 ∈ (𝑆 RngIso 𝑅)) | ||
Theorem | rngoisoco 34414 | The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngIso 𝑆) ∧ 𝐺 ∈ (𝑆 RngIso 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RngIso 𝑇)) | ||
Definition | df-risc 34415* | Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))} | ||
Theorem | isriscg 34416* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) | ||
Theorem | isrisc 34417* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) | ||
Theorem | risc 34418* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) | ||
Theorem | risci 34419 | Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝑅 ≃𝑟 𝑆) | ||
Theorem | riscer 34420 | Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ≃𝑟 Er dom ≃𝑟 | ||
Syntax | ccm2 34421 | Extend class notation with a class that adds commutativity to various flavors of rings. |
class Com2 | ||
Definition | df-com2 34422* | A device to add commutativity to various sorts of rings. I use ran 𝑔 because I suppose 𝑔 has a neutral element and therefore is onto. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
⊢ Com2 = {〈𝑔, ℎ〉 ∣ ∀𝑎 ∈ ran 𝑔∀𝑏 ∈ ran 𝑔(𝑎ℎ𝑏) = (𝑏ℎ𝑎)} | ||
Syntax | cfld 34423 | Extend class notation with the class of all fields. |
class Fld | ||
Definition | df-fld 34424 | Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.) |
⊢ Fld = (DivRingOps ∩ Com2) | ||
Syntax | ccring 34425 | Extend class notation with the class of commutative rings. |
class CRingOps | ||
Definition | df-crngo 34426 | Define the class of commutative rings. (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ CRingOps = (RingOps ∩ Com2) | ||
Theorem | iscom2 34427* | A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) | ||
Theorem | iscrngo 34428 | The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | ||
Theorem | iscrngo2 34429* | The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) | ||
Theorem | iscringd 34430* | Conditions that determine a commutative ring. (Contributed by Jeff Madsen, 20-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ (𝜑 → 𝐺 ∈ AbelOp) & ⊢ (𝜑 → 𝑋 = ran 𝐺) & ⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) ⇒ ⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ CRingOps) | ||
Theorem | flddivrng 34431 | A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | ||
Theorem | crngorngo 34432 | A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | ||
Theorem | crngocom 34433 | The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) | ||
Theorem | crngm23 34434 | Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) | ||
Theorem | crngm4 34435 | Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) | ||
Theorem | fldcrng 34436 | A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | ||
Theorem | isfld2 34437 | The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | ||
Theorem | crngohomfo 34438 | The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → 𝑆 ∈ CRingOps) | ||
Syntax | cidl 34439 | Extend class notation with the class of ideals. |
class Idl | ||
Syntax | cpridl 34440 | Extend class notation with the class of prime ideals. |
class PrIdl | ||
Syntax | cmaxidl 34441 | Extend class notation with the class of maximal ideals. |
class MaxIdl | ||
Definition | df-idl 34442* | Define the class of (two-sided) ideals of a ring 𝑅. A subset of 𝑅 is an ideal if it contains 0, is closed under addition, and is closed under multiplication on either side by any element of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st ‘𝑟) ∣ ((GId‘(1st ‘𝑟)) ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥(1st ‘𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st ‘𝑟)((𝑧(2nd ‘𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd ‘𝑟)𝑧) ∈ 𝑖)))}) | ||
Definition | df-pridl 34443* | Define the class of prime ideals of a ring 𝑅. A proper ideal 𝐼 of 𝑅 is prime if whenever 𝐴𝐵 ⊆ 𝐼 for ideals 𝐴 and 𝐵, either 𝐴 ⊆ 𝐼 or 𝐵 ⊆ 𝐼. The more familiar definition using elements rather than ideals is equivalent provided 𝑅 is commutative; see ispridl2 34470 and ispridlc 34502. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Definition | df-maxidl 34444* | Define the class of maximal ideals of a ring 𝑅. A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) | ||
Theorem | idlval 34445* | The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))}) | ||
Theorem | isidl 34446* | The predicate "is an ideal of the ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | ||
Theorem | isidlc 34447* | The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))) | ||
Theorem | idlss 34448 | An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) | ||
Theorem | idlcl 34449 | An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝑋) | ||
Theorem | idl0cl 34450 | An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝐼) | ||
Theorem | idladdcl 34451 | An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) | ||
Theorem | idllmulcl 34452 | An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼) | ||
Theorem | idlrmulcl 34453 | An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) | ||
Theorem | idlnegcl 34454 | An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) | ||
Theorem | idlsubcl 34455 | An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) | ||
Theorem | rngoidl 34456 | A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) | ||
Theorem | 0idl 34457 | The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) | ||
Theorem | 1idl 34458 | Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) | ||
Theorem | 0rngo 34459 | In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) | ||
Theorem | divrngidl 34460 | The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋}) | ||
Theorem | intidl 34461 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∩ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | inidl 34462 | The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) | ||
Theorem | unichnidl 34463* | The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | keridl 34464 | The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑆) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (◡𝐹 “ {𝑍}) ∈ (Idl‘𝑅)) | ||
Theorem | pridlval 34465* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | ispridl 34466* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
Theorem | pridlidl 34467 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) | ||
Theorem | pridlnr 34468 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ≠ 𝑋) | ||
Theorem | pridl 34469* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)) | ||
Theorem | ispridl2 34470* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 34502 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) | ||
Theorem | maxidlval 34471* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) | ||
Theorem | ismaxidl 34472* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | ||
Theorem | maxidlidl 34473 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | ||
Theorem | maxidlnr 34474 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ 𝑋) | ||
Theorem | maxidlmax 34475 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) | ||
Theorem | maxidln1 34476 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) | ||
Theorem | maxidln0 34477 | A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) | ||
Syntax | cprrng 34478 | Extend class notation with the class of prime rings. |
class PrRing | ||
Syntax | cdmn 34479 | Extend class notation with the class of domains. |
class Dmn | ||
Definition | df-prrngo 34480 | Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | ||
Definition | df-dmn 34481 | Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ Dmn = (PrRing ∩ Com2) | ||
Theorem | isprrngo 34482 | The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) | ||
Theorem | prrngorngo 34483 | A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | ||
Theorem | smprngopr 34484 | A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing) | ||
Theorem | divrngpr 34485 | A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | ||
Theorem | isdmn 34486 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | ||
Theorem | isdmn2 34487 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | ||
Theorem | dmncrng 34488 | A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | ||
Theorem | dmnrngo 34489 | A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) | ||
Theorem | flddmn 34490 | A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) | ||
Syntax | cigen 34491 | Extend class notation with the ideal generation function. |
class IdlGen | ||
Definition | df-igen 34492* | Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | ||
Theorem | igenval 34493* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) | ||
Theorem | igenss 34494 | A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) | ||
Theorem | igenidl 34495 | The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) | ||
Theorem | igenmin 34496 | The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) | ||
Theorem | igenidl2 34497 | The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) | ||
Theorem | igenval2 34498* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗)))) | ||
Theorem | prnc 34499* | A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) | ||
Theorem | isfldidl 34500 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |