| Metamath
Proof Explorer Theorem List (p. 345 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cndprobin 34401 | An identity linking conditional probability and intersection. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐵) ≠ 0) → (((cprob‘𝑃)‘〈𝐴, 𝐵〉) · (𝑃‘𝐵)) = (𝑃‘(𝐴 ∩ 𝐵))) | ||
| Theorem | cndprob01 34402 | The conditional probability has values in [0, 1]. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐵) ≠ 0) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) ∈ (0[,]1)) | ||
| Theorem | cndprobtot 34403 | The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃‘𝐴) ≠ 0) → ((cprob‘𝑃)‘〈∪ dom 𝑃, 𝐴〉) = 1) | ||
| Theorem | cndprobnul 34404 | The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃‘𝐴) ≠ 0) → ((cprob‘𝑃)‘〈∅, 𝐴〉) = 0) | ||
| Theorem | cndprobprob 34405* | The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) | ||
| Theorem | bayesth 34406 | Bayes Theorem. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐴) ≠ 0 ∧ (𝑃‘𝐵) ≠ 0) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((((cprob‘𝑃)‘〈𝐵, 𝐴〉) · (𝑃‘𝐴)) / (𝑃‘𝐵))) | ||
| Syntax | crrv 34407 | Extend class notation with the class of real-valued random variables. |
| class rRndVar | ||
| Definition | df-rrv 34408 | In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016.) (Revised by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) | ||
| Theorem | rrvmbfm 34409 | A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) | ||
| Theorem | isrrvv 34410* | Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) | ||
| Theorem | rrvvf 34411 | A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) | ||
| Theorem | rrvfn 34412 | A real-valued random variable is a function over the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) | ||
| Theorem | rrvdm 34413 | The domain of a random variable is the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) | ||
| Theorem | rrvrnss 34414 | The range of a random variable as a subset of ℝ. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ran 𝑋 ⊆ ℝ) | ||
| Theorem | rrvf2 34415 | A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋:dom 𝑋⟶ℝ) | ||
| Theorem | rrvdmss 34416 | The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋) | ||
| Theorem | rrvfinvima 34417* | For a real-value random variable 𝑋, any open interval in ℝ is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) | ||
| Theorem | 0rrv 34418* | The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑥 ∈ ∪ dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃)) | ||
| Theorem | rrvadd 34419 | The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) | ||
| Theorem | rrvmulc 34420 | A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017.) (Revised by Thierry Arnoux, 22-May-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋 ∘f/c · 𝐶) ∈ (rRndVar‘𝑃)) | ||
| Theorem | rrvsum 34421 | An indexed sum of random variables is a random variable. (Contributed by Thierry Arnoux, 22-May-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋:ℕ⟶(rRndVar‘𝑃)) & ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑆 = (seq1( ∘f + , 𝑋)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (rRndVar‘𝑃)) | ||
| Theorem | boolesineq 34422* | Boole's inequality (union bound). For any finite or countable collection of events, the probability of their union is at most the sum of their probabilities. (Suggested by DeepSeek R1.) (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → (𝑃‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ Σ*𝑛 ∈ ℕ(𝑃‘(𝐴‘𝑛))) | ||
| Syntax | corvc 34423 | Extend class notation to include the preimage set mapping operator. |
| class ∘RV/𝑐𝑅 | ||
| Definition | df-orvc 34424* |
Define the preimage set mapping operator. In probability theory, the
notation 𝑃(𝑋 = 𝐴) denotes the probability that a
random variable
𝑋 takes the value 𝐴. We
introduce here an operator which
enables to write this in Metamath as (𝑃‘(𝑋∘RV/𝑐 I 𝐴)), and
keep a similar notation. Because with this notation (𝑋∘RV/𝑐 I 𝐴)
is a set, we can also apply it to conditional probabilities, like in
(𝑃‘(𝑋∘RV/𝑐 I 𝐴) ∣ (𝑌∘RV/𝑐 I 𝐵))).
The oRVC operator transforms a relation 𝑅 into an operation taking a random variable 𝑋 and a constant 𝐶, and returning the preimage through 𝑋 of the equivalence class of 𝐶. The most commonly used relations are: - equality: {𝑋 = 𝐴} as (𝑋∘RV/𝑐 I 𝐴) cf. ideq 5799- elementhood: {𝑋 ∈ 𝐴} as (𝑋∘RV/𝑐 E 𝐴) cf. epel 5526- less-than: {𝑋 ≤ 𝐴} as (𝑋∘RV/𝑐 ≤ 𝐴) Even though it is primarily designed to be used within probability theory and with random variables, this operator is defined on generic functions, and could be used in other fields, e.g., for continuous functions. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | ||
| Theorem | orvcval 34425* | Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| ⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) | ||
| Theorem | orvcval2 34426* | Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| ⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) | ||
| Theorem | elorvc 34427* | Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) | ||
| Theorem | orvcval4 34428* | The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34425. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) | ||
| Theorem | orvcoel 34429* | If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) | ||
| Theorem | orvccel 34430* | If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) | ||
| Theorem | elorrvc 34431* | Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) | ||
| Theorem | orrvcval4 34432* | The value of the preimage mapping operator can be restricted to preimages of subsets of ℝ. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) | ||
| Theorem | orrvcoel 34433* | If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) | ||
| Theorem | orrvccel 34434* | If the relation produces closed sets, preimage maps are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) | ||
| Theorem | orvcgteel 34435 | Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) | ||
| Theorem | orvcelval 34436 | Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) | ||
| Theorem | orvcelel 34437 | Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) ∈ dom 𝑃) | ||
| Theorem | dstrvval 34438* | The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) | ||
| Theorem | dstrvprob 34439* | The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 34438). (Contributed by Thierry Arnoux, 10-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) ⇒ ⊢ (𝜑 → 𝐷 ∈ Prob) | ||
| Theorem | orvclteel 34440 | Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) | ||
| Theorem | dstfrvel 34441 | Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) & ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) | ||
| Theorem | dstfrvunirn 34442* | The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (𝑋∘RV/𝑐 ≤ 𝑛)) = ∪ dom 𝑃) | ||
| Theorem | orvclteinc 34443 | Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) | ||
| Theorem | dstfrvinc 34444* | A cumulative distribution function is nondecreasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) | ||
| Theorem | dstfrvclim1 34445* | The limit of the cumulative distribution function is one. (Contributed by Thierry Arnoux, 12-Feb-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
| Theorem | coinfliplem 34446 | Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) | ||
| Theorem | coinflipprob 34447 | The 𝑃 we defined for coin-flip is a probability law. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ 𝑃 ∈ Prob | ||
| Theorem | coinflipspace 34448 | The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} | ||
| Theorem | coinflipuniv 34449 | The universe of our coin-flip probability is {𝐻, 𝑇}. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} | ||
| Theorem | coinfliprv 34450 | The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ 𝑋 ∈ (rRndVar‘𝑃) | ||
| Theorem | coinflippv 34451 | The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ (𝑃‘{𝐻}) = (1 / 2) | ||
| Theorem | coinflippvt 34452 | The probability of tails is one-half. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| ⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ (𝑃‘{𝑇}) = (1 / 2) | ||
| Theorem | ballotlemoex 34453* | 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⇒ ⊢ 𝑂 ∈ V | ||
| Theorem | ballotlem1 34454* | The size of the universe is a binomial coefficient. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⇒ ⊢ (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀) | ||
| Theorem | ballotlemelo 34455* | Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⇒ ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) | ||
| Theorem | ballotlem2 34456* | The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) ⇒ ⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁)) | ||
| Theorem | ballotlemfval 34457* | The value of 𝐹. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶)))) | ||
| Theorem | ballotlemfelz 34458* | (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) | ||
| Theorem | ballotlemfp1 34459* | If the 𝐽 th ballot is for A, (𝐹‘𝐶) goes up 1. If the 𝐽 th ballot is for B, (𝐹‘𝐶) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℕ) ⇒ ⊢ (𝜑 → ((¬ 𝐽 ∈ 𝐶 → ((𝐹‘𝐶)‘𝐽) = (((𝐹‘𝐶)‘(𝐽 − 1)) − 1)) ∧ (𝐽 ∈ 𝐶 → ((𝐹‘𝐶)‘𝐽) = (((𝐹‘𝐶)‘(𝐽 − 1)) + 1)))) | ||
| Theorem | ballotlemfc0 34460* | 𝐹 takes value 0 between negative and positive values. (Contributed by Thierry Arnoux, 24-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → ∃𝑖 ∈ (1...𝐽)((𝐹‘𝐶)‘𝑖) ≤ 0) & ⊢ (𝜑 → 0 < ((𝐹‘𝐶)‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (1...𝐽)((𝐹‘𝐶)‘𝑘) = 0) | ||
| Theorem | ballotlemfcc 34461* | 𝐹 takes value 0 between positive and negative values. (Contributed by Thierry Arnoux, 2-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → ∃𝑖 ∈ (1...𝐽)0 ≤ ((𝐹‘𝐶)‘𝑖)) & ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) < 0) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (1...𝐽)((𝐹‘𝐶)‘𝑘) = 0) | ||
| Theorem | ballotlemfmpn 34462* | (𝐹‘𝐶) finishes counting at (𝑀 − 𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) ⇒ ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) | ||
| Theorem | ballotlemfval0 34463* | (𝐹‘𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) ⇒ ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) | ||
| Theorem | ballotleme 34464* | Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} ⇒ ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) | ||
| Theorem | ballotlemodife 34465* | Elements of (𝑂 ∖ 𝐸). (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) ↔ (𝐶 ∈ 𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0)) | ||
| Theorem | ballotlem4 34466* | If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} ⇒ ⊢ (𝐶 ∈ 𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶 ∈ 𝐸)) | ||
| Theorem | ballotlem5 34467* | If A is not ahead throughout, there is a 𝑘 where votes are tied. (Contributed by Thierry Arnoux, 1-Dec-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑘 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑘) = 0) | ||
| Theorem | ballotlemi 34468* | Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) | ||
| Theorem | ballotlemiex 34469* | Properties of (𝐼‘𝐶). (Contributed by Thierry Arnoux, 12-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) | ||
| Theorem | ballotlemi1 34470* | The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) | ||
| Theorem | ballotlemii 34471* | The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) | ||
| Theorem | ballotlemsup 34472* | The set of zeroes of 𝐹 satisfies the conditions to have a supremum. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤))) | ||
| Theorem | ballotlemimin 34473* | (𝐼‘𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼‘𝐶) − 1))((𝐹‘𝐶)‘𝑘) = 0) | ||
| Theorem | ballotlemic 34474* | If the first vote is for B, the vote on the first tie is for A. (Contributed by Thierry Arnoux, 1-Dec-2016.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ∈ 𝐶) | ||
| Theorem | ballotlem1c 34475* | If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) ∈ 𝐶) | ||
| Theorem | ballotlemsval 34476* | Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) | ||
| Theorem | ballotlemsv 34477* | Value of 𝑆 evaluated at 𝐽 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) | ||
| Theorem | ballotlemsgt1 34478* | 𝑆 maps values less than (𝐼‘𝐶) to values greater than 1. (Contributed by Thierry Arnoux, 28-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → 1 < ((𝑆‘𝐶)‘𝐽)) | ||
| Theorem | ballotlemsdom 34479* | Domain of 𝑆 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) | ||
| Theorem | ballotlemsel1i 34480* | The range (1...(𝐼‘𝐶)) is invariant under (𝑆‘𝐶). (Contributed by Thierry Arnoux, 28-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) | ||
| Theorem | ballotlemsf1o 34481* | The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) | ||
| Theorem | ballotlemsi 34482* | The image by 𝑆 of the first tie pick is the first pick. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = 1) | ||
| Theorem | ballotlemsima 34483* | The image by 𝑆 of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (1...𝐽)) = (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) | ||
| Theorem | ballotlemieq 34484* | If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) | ||
| Theorem | ballotlemrval 34485* | Value of 𝑅. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) | ||
| Theorem | ballotlemscr 34486* | The image of (𝑅‘𝐶) by (𝑆‘𝐶). (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ (𝑅‘𝐶)) = 𝐶) | ||
| Theorem | ballotlemrv 34487* | Value of 𝑅 evaluated at 𝐽. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐽 ∈ (𝑅‘𝐶) ↔ if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) ∈ 𝐶)) | ||
| Theorem | ballotlemrv1 34488* | Value of 𝑅 before the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 ≤ (𝐼‘𝐶)) → (𝐽 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 𝐽) ∈ 𝐶)) | ||
| Theorem | ballotlemrv2 34489* | Value of 𝑅 after the tie. (Contributed by Thierry Arnoux, 11-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ (𝐼‘𝐶) < 𝐽) → (𝐽 ∈ (𝑅‘𝐶) ↔ 𝐽 ∈ 𝐶)) | ||
| Theorem | ballotlemro 34490* | Range of 𝑅 is included in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) | ||
| Theorem | ballotlemgval 34491* | Expand the value of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) & ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) ⇒ ⊢ ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 ↑ 𝑉) = ((♯‘(𝑉 ∩ 𝑈)) − (♯‘(𝑉 ∖ 𝑈)))) | ||
| Theorem | ballotlemgun 34492* | A property of the defined ↑ operator. (Contributed by Thierry Arnoux, 26-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) & ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑉 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → (𝑉 ∩ 𝑊) = ∅) ⇒ ⊢ (𝜑 → (𝑈 ↑ (𝑉 ∪ 𝑊)) = ((𝑈 ↑ 𝑉) + (𝑈 ↑ 𝑊))) | ||
| Theorem | ballotlemfg 34493* | Express the value of (𝐹‘𝐶) in terms of ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) & ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘𝐽) = (𝐶 ↑ (1...𝐽))) | ||
| Theorem | ballotlemfrc 34494* | Express the value of (𝐹‘(𝑅‘𝐶)) in terms of the newly defined ↑. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) & ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) | ||
| Theorem | ballotlemfrci 34495* | Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) & ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) | ||
| Theorem | ballotlemfrceq 34496* | Value of 𝐹 for a reverse counting (𝑅‘𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) & ⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽)) | ||
| Theorem | ballotlemfrcn0 34497* | Value of 𝐹 for a reversed counting (𝑅‘𝐶), before the first tie, cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2017.) (Revised by AV, 6-Oct-2020.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁)) ∧ 𝐽 < (𝐼‘𝐶)) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ≠ 0) | ||
| Theorem | ballotlemrc 34498* | Range of 𝑅. (Contributed by Thierry Arnoux, 19-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) | ||
| Theorem | ballotlemirc 34499* | Applying 𝑅 does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017.) (Revised by AV, 6-Oct-2020.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) | ||
| Theorem | ballotlemrinv0 34500* | Lemma for ballotlemrinv 34501. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} & ⊢ 𝑁 < 𝑀 & ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) & ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) & ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) ⇒ ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |