| Metamath
Proof Explorer Theorem List (p. 345 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eulerpartlemgu 34401* | Lemma for eulerpart 34406: Rewriting the 𝑈 set for an odd partition Note that interestingly, this proof reuses marypha2lem2 9330. (Contributed by Thierry Arnoux, 10-Aug-2018.) |
| ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} & ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} & ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} & ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) & ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} & ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) & ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} & ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) & ⊢ 𝑈 = ∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ⇒ ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝑈 = {〈𝑡, 𝑛〉 ∣ (𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)‘𝑡))}) | ||
| Theorem | eulerpartlemgh 34402* | Lemma for eulerpart 34406: The 𝐹 function is a bijection on the 𝑈 subsets. (Contributed by Thierry Arnoux, 15-Aug-2018.) |
| ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} & ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} & ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} & ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) & ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} & ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) & ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} & ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) & ⊢ 𝑈 = ∪ 𝑡 ∈ ((◡𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴‘𝑡))) ⇒ ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝐹 ↾ 𝑈):𝑈–1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴‘𝑡))((2↑𝑛) · 𝑡) = 𝑚}) | ||
| Theorem | eulerpartlemgf 34403* | Lemma for eulerpart 34406: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.) |
| ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} & ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} & ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} & ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) & ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} & ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) & ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} & ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) ⇒ ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡(𝐺‘𝐴) “ ℕ) ∈ Fin) | ||
| Theorem | eulerpartlemgs2 34404* | Lemma for eulerpart 34406: The 𝐺 function also preserves partition sums. (Contributed by Thierry Arnoux, 10-Sep-2017.) |
| ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} & ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} & ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} & ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) & ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} & ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) & ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} & ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) & ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) ⇒ ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑆‘(𝐺‘𝐴)) = (𝑆‘𝐴)) | ||
| Theorem | eulerpartlemn 34405* | Lemma for eulerpart 34406. (Contributed by Thierry Arnoux, 30-Aug-2018.) |
| ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} & ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} & ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} & ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) & ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} & ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) & ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} & ⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) & ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) ⇒ ⊢ (𝐺 ↾ 𝑂):𝑂–1-1-onto→𝐷 | ||
| Theorem | eulerpart 34406* | Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let 𝑃 be the set of all partitions of 𝑁, represented as multisets of positive integers, which is to say functions from ℕ to ℕ0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals 𝑁. Then the set 𝑂 of all partitions that only consist of odd numbers and the set 𝐷 of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} & ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} & ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} ⇒ ⊢ (♯‘𝑂) = (♯‘𝐷) | ||
| Syntax | csseq 34407 | Sequences defined by strong recursion. |
| class seqstr | ||
| Definition | df-sseq 34408* | Define a builder for sequences by strong recursion, i.e., by computing the value of the n-th element of the sequence from all preceding elements and not just the previous one. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
| ⊢ seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0 × {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)}))))) | ||
| Theorem | subiwrd 34409 | Lemma for sseqp1 34419. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝐹:ℕ0⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑆) | ||
| Theorem | subiwrdlen 34410 | Length of a subword of an infinite word. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝐹:ℕ0⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) | ||
| Theorem | iwrdsplit 34411 | Lemma for sseqp1 34419. (Contributed by Thierry Arnoux, 25-Apr-2019.) (Proof shortened by AV, 14-Oct-2022.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝐹:ℕ0⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹 ↾ (0..^(𝑁 + 1))) = ((𝐹 ↾ (0..^𝑁)) ++ 〈“(𝐹‘𝑁)”〉)) | ||
| Theorem | sseqval 34412* | Value of the strong sequence builder function. The set 𝑊 represents here the words of length greater than or equal to the lenght of the initial sequence 𝑀. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))) | ||
| Theorem | sseqfv1 34413 | Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑀))) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝑀‘𝑁)) | ||
| Theorem | sseqfn 34414 | A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) | ||
| Theorem | sseqmw 34415 | Lemma for sseqf 34416 amd sseqp1 34419. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑊) | ||
| Theorem | sseqf 34416 | A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀seqstr𝐹):ℕ0⟶𝑆) | ||
| Theorem | sseqfres 34417 | The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) | ||
| Theorem | sseqfv2 34418* | Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(♯‘𝑀))) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))‘𝑁))) | ||
| Theorem | sseqp1 34419 | Value of the strong sequence builder function at a successor. (Contributed by Thierry Arnoux, 24-Apr-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(♯‘𝑀))) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))) | ||
| Syntax | cfib 34420 | The Fibonacci sequence. |
| class Fibci | ||
| Definition | df-fib 34421 | Define the Fibonacci sequence, where that each element is the sum of the two preceding ones, starting from 0 and 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | ||
| Theorem | fiblem 34422 | Lemma for fib0 34423, fib1 34424 and fibp1 34425. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | ||
| Theorem | fib0 34423 | Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘0) = 0 | ||
| Theorem | fib1 34424 | Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘1) = 1 | ||
| Theorem | fibp1 34425 | Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁))) | ||
| Theorem | fib2 34426 | Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘2) = 1 | ||
| Theorem | fib3 34427 | Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘3) = 2 | ||
| Theorem | fib4 34428 | Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘4) = 3 | ||
| Theorem | fib5 34429 | Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘5) = 5 | ||
| Theorem | fib6 34430 | Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| ⊢ (Fibci‘6) = 8 | ||
| Syntax | cprb 34431 | Extend class notation to include the class of probability measures. |
| class Prob | ||
| Definition | df-prob 34432 | Define the class of probability measures as the set of measures with total measure 1. (Contributed by Thierry Arnoux, 14-Sep-2016.) |
| ⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | ||
| Theorem | elprob 34433 | The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
| ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) | ||
| Theorem | domprobmeas 34434 | A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | ||
| Theorem | domprobsiga 34435 | The domain of a probability measure is a sigma-algebra. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | ||
| Theorem | probtot 34436 | The probability of the universe set is 1. Second axiom of Kolmogorov. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
| ⊢ (𝑃 ∈ Prob → (𝑃‘∪ dom 𝑃) = 1) | ||
| Theorem | prob01 34437 | A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) | ||
| Theorem | probnul 34438 | The probability of the empty event set is 0. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ (𝑃 ∈ Prob → (𝑃‘∅) = 0) | ||
| Theorem | unveldomd 34439 | The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) | ||
| Theorem | unveldom 34440 | The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
| ⊢ (𝑃 ∈ Prob → ∪ dom 𝑃 ∈ dom 𝑃) | ||
| Theorem | nuleldmp 34441 | The empty set is an element of the domain of the probability. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
| ⊢ (𝑃 ∈ Prob → ∅ ∈ dom 𝑃) | ||
| Theorem | probcun 34442* | The probability of the union of a countable disjoint set of events is the sum of their probabilities. (Third axiom of Kolmogorov) Here, the Σ construct cannot be used as it can handle infinite indexing set only if they are subsets of ℤ, which is not the case here. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ 𝒫 dom 𝑃 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑃‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑃‘𝑥)) | ||
| Theorem | probun 34443 | The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((𝐴 ∩ 𝐵) = ∅ → (𝑃‘(𝐴 ∪ 𝐵)) = ((𝑃‘𝐴) + (𝑃‘𝐵)))) | ||
| Theorem | probdif 34444 | The probability of the difference of two event sets. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → (𝑃‘(𝐴 ∖ 𝐵)) = ((𝑃‘𝐴) − (𝑃‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | probinc 34445 | A probability law is increasing with regard to event set inclusion. (Contributed by Thierry Arnoux, 10-Feb-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ 𝐴 ⊆ 𝐵) → (𝑃‘𝐴) ≤ (𝑃‘𝐵)) | ||
| Theorem | probdsb 34446 | The probability of the complement of a set. That is, the probability that the event 𝐴 does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘(∪ dom 𝑃 ∖ 𝐴)) = (1 − (𝑃‘𝐴))) | ||
| Theorem | probmeasd 34447 | A probability measure is a measure. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → 𝑃 ∈ ∪ ran measures) | ||
| Theorem | probvalrnd 34448 | The value of a probability is a real number. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) ⇒ ⊢ (𝜑 → (𝑃‘𝐴) ∈ ℝ) | ||
| Theorem | probtotrnd 34449 | The probability of the universe set is finite. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑃‘∪ dom 𝑃) ∈ ℝ) | ||
| Theorem | totprobd 34450* | Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) & ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) & ⊢ (𝜑 → 𝐵 ≼ ω) & ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) ⇒ ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) | ||
| Theorem | totprob 34451* | Law of total probability. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (∪ 𝐵 = ∪ dom 𝑃 ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ (𝐵 ≼ ω ∧ Disj 𝑏 ∈ 𝐵 𝑏))) → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) | ||
| Theorem | probfinmeasb 34452 | Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob) | ||
| Theorem | probfinmeasbALTV 34453* | Alternate version of probfinmeasb 34452. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) | ||
| Theorem | probmeasb 34454* | Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ Prob) | ||
| Syntax | ccprob 34455 | Extends class notation with the conditional probability builder. |
| class cprob | ||
| Definition | df-cndprob 34456* | Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) | ||
| Theorem | cndprobval 34457 | The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) | ||
| Theorem | cndprobin 34458 | An identity linking conditional probability and intersection. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐵) ≠ 0) → (((cprob‘𝑃)‘〈𝐴, 𝐵〉) · (𝑃‘𝐵)) = (𝑃‘(𝐴 ∩ 𝐵))) | ||
| Theorem | cndprob01 34459 | The conditional probability has values in [0, 1]. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐵) ≠ 0) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) ∈ (0[,]1)) | ||
| Theorem | cndprobtot 34460 | The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃‘𝐴) ≠ 0) → ((cprob‘𝑃)‘〈∪ dom 𝑃, 𝐴〉) = 1) | ||
| Theorem | cndprobnul 34461 | The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃‘𝐴) ≠ 0) → ((cprob‘𝑃)‘〈∅, 𝐴〉) = 0) | ||
| Theorem | cndprobprob 34462* | The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) | ||
| Theorem | bayesth 34463 | Bayes Theorem. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐴) ≠ 0 ∧ (𝑃‘𝐵) ≠ 0) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((((cprob‘𝑃)‘〈𝐵, 𝐴〉) · (𝑃‘𝐴)) / (𝑃‘𝐵))) | ||
| Syntax | crrv 34464 | Extend class notation with the class of real-valued random variables. |
| class rRndVar | ||
| Definition | df-rrv 34465 | In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016.) (Revised by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) | ||
| Theorem | rrvmbfm 34466 | A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) | ||
| Theorem | isrrvv 34467* | Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) | ||
| Theorem | rrvvf 34468 | A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) | ||
| Theorem | rrvfn 34469 | A real-valued random variable is a function over the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) | ||
| Theorem | rrvdm 34470 | The domain of a random variable is the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) | ||
| Theorem | rrvrnss 34471 | The range of a random variable as a subset of ℝ. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ran 𝑋 ⊆ ℝ) | ||
| Theorem | rrvf2 34472 | A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋:dom 𝑋⟶ℝ) | ||
| Theorem | rrvdmss 34473 | The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋) | ||
| Theorem | rrvfinvima 34474* | For a real-value random variable 𝑋, any open interval in ℝ is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) | ||
| Theorem | 0rrv 34475* | The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑥 ∈ ∪ dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃)) | ||
| Theorem | rrvadd 34476 | The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) | ||
| Theorem | rrvmulc 34477 | A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017.) (Revised by Thierry Arnoux, 22-May-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋 ∘f/c · 𝐶) ∈ (rRndVar‘𝑃)) | ||
| Theorem | rrvsum 34478 | An indexed sum of random variables is a random variable. (Contributed by Thierry Arnoux, 22-May-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋:ℕ⟶(rRndVar‘𝑃)) & ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑆 = (seq1( ∘f + , 𝑋)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (rRndVar‘𝑃)) | ||
| Theorem | boolesineq 34479* | Boole's inequality (union bound). For any finite or countable collection of events, the probability of their union is at most the sum of their probabilities. (Suggested by DeepSeek R1.) (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ ((𝑃 ∈ Prob ∧ 𝐴:ℕ⟶dom 𝑃) → (𝑃‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤ Σ*𝑛 ∈ ℕ(𝑃‘(𝐴‘𝑛))) | ||
| Syntax | corvc 34480 | Extend class notation to include the preimage set mapping operator. |
| class ∘RV/𝑐𝑅 | ||
| Definition | df-orvc 34481* |
Define the preimage set mapping operator. In probability theory, the
notation 𝑃(𝑋 = 𝐴) denotes the probability that a
random variable
𝑋 takes the value 𝐴. We
introduce here an operator which
enables to write this in Metamath as (𝑃‘(𝑋∘RV/𝑐 I 𝐴)), and
keep a similar notation. Because with this notation (𝑋∘RV/𝑐 I 𝐴)
is a set, we can also apply it to conditional probabilities, like in
(𝑃‘(𝑋∘RV/𝑐 I 𝐴) ∣ (𝑌∘RV/𝑐 I 𝐵))).
The oRVC operator transforms a relation 𝑅 into an operation taking a random variable 𝑋 and a constant 𝐶, and returning the preimage through 𝑋 of the equivalence class of 𝐶. The most commonly used relations are: - equality: {𝑋 = 𝐴} as (𝑋∘RV/𝑐 I 𝐴) cf. ideq 5799- elementhood: {𝑋 ∈ 𝐴} as (𝑋∘RV/𝑐 E 𝐴) cf. epel 5524- less-than: {𝑋 ≤ 𝐴} as (𝑋∘RV/𝑐 ≤ 𝐴) Even though it is primarily designed to be used within probability theory and with random variables, this operator is defined on generic functions, and could be used in other fields, e.g., for continuous functions. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | ||
| Theorem | orvcval 34482* | Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| ⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) | ||
| Theorem | orvcval2 34483* | Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| ⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) | ||
| Theorem | elorvc 34484* | Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) | ||
| Theorem | orvcval4 34485* | The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34482. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) | ||
| Theorem | orvcoel 34486* | If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) | ||
| Theorem | orvccel 34487* | If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) | ||
| Theorem | elorrvc 34488* | Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) | ||
| Theorem | orrvcval4 34489* | The value of the preimage mapping operator can be restricted to preimages of subsets of ℝ. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) | ||
| Theorem | orrvcoel 34490* | If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) | ||
| Theorem | orrvccel 34491* | If the relation produces closed sets, preimage maps are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) | ||
| Theorem | orvcgteel 34492 | Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) | ||
| Theorem | orvcelval 34493 | Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) | ||
| Theorem | orvcelel 34494 | Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) ∈ dom 𝑃) | ||
| Theorem | dstrvval 34495* | The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) | ||
| Theorem | dstrvprob 34496* | The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 34495). (Contributed by Thierry Arnoux, 10-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) ⇒ ⊢ (𝜑 → 𝐷 ∈ Prob) | ||
| Theorem | orvclteel 34497 | Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) | ||
| Theorem | dstfrvel 34498 | Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) & ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) | ||
| Theorem | dstfrvunirn 34499* | The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (𝑋∘RV/𝑐 ≤ 𝑛)) = ∪ dom 𝑃) | ||
| Theorem | orvclteinc 34500 | Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
| ⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |