Detailed syntax breakdown of Definition df-gzpow
| Step | Hyp | Ref
| Expression |
| 1 | | cgzp 35453 |
. 2
class
AxPow |
| 2 | | c1o 8499 |
. . . . . . . 8
class
1o |
| 3 | | c2o 8500 |
. . . . . . . 8
class
2o |
| 4 | | cgoe 35338 |
. . . . . . . 8
class
∈𝑔 |
| 5 | 2, 3, 4 | co 7431 |
. . . . . . 7
class
(1o∈𝑔2o) |
| 6 | | c0 4333 |
. . . . . . . 8
class
∅ |
| 7 | 2, 6, 4 | co 7431 |
. . . . . . 7
class
(1o∈𝑔∅) |
| 8 | | cgob 35441 |
. . . . . . 7
class
↔𝑔 |
| 9 | 5, 7, 8 | co 7431 |
. . . . . 6
class
((1o∈𝑔2o)
↔𝑔
(1o∈𝑔∅)) |
| 10 | 9, 2 | cgol 35340 |
. . . . 5
class
∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) |
| 11 | 3, 2, 4 | co 7431 |
. . . . 5
class
(2o∈𝑔1o) |
| 12 | | cgoi 35439 |
. . . . 5
class
→𝑔 |
| 13 | 10, 11, 12 | co 7431 |
. . . 4
class
(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔
(2o∈𝑔1o)) |
| 14 | 13, 3 | cgol 35340 |
. . 3
class
∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔
(2o∈𝑔1o)) |
| 15 | 14, 2 | cgox 35443 |
. 2
class
∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) |
| 16 | 1, 15 | wceq 1540 |
1
wff AxPow =
∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) |