Detailed syntax breakdown of Definition df-gzpow
Step | Hyp | Ref
| Expression |
1 | | cgzp 33310 |
. 2
class
AxPow |
2 | | c1o 8260 |
. . . . . . . 8
class
1o |
3 | | c2o 8261 |
. . . . . . . 8
class
2o |
4 | | cgoe 33195 |
. . . . . . . 8
class
∈𝑔 |
5 | 2, 3, 4 | co 7255 |
. . . . . . 7
class
(1o∈𝑔2o) |
6 | | c0 4253 |
. . . . . . . 8
class
∅ |
7 | 2, 6, 4 | co 7255 |
. . . . . . 7
class
(1o∈𝑔∅) |
8 | | cgob 33298 |
. . . . . . 7
class
↔𝑔 |
9 | 5, 7, 8 | co 7255 |
. . . . . 6
class
((1o∈𝑔2o)
↔𝑔
(1o∈𝑔∅)) |
10 | 9, 2 | cgol 33197 |
. . . . 5
class
∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) |
11 | 3, 2, 4 | co 7255 |
. . . . 5
class
(2o∈𝑔1o) |
12 | | cgoi 33296 |
. . . . 5
class
→𝑔 |
13 | 10, 11, 12 | co 7255 |
. . . 4
class
(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔
(2o∈𝑔1o)) |
14 | 13, 3 | cgol 33197 |
. . 3
class
∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔
(2o∈𝑔1o)) |
15 | 14, 2 | cgox 33300 |
. 2
class
∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) |
16 | 1, 15 | wceq 1539 |
1
wff AxPow =
∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) |