Detailed syntax breakdown of Definition df-hlhil
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | chlh 41934 | . 2
class
HLHil | 
| 2 |  | vk | . . 3
setvar 𝑘 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vw | . . . 4
setvar 𝑤 | 
| 5 | 2 | cv 1539 | . . . . 5
class 𝑘 | 
| 6 |  | clh 39986 | . . . . 5
class
LHyp | 
| 7 | 5, 6 | cfv 6561 | . . . 4
class
(LHyp‘𝑘) | 
| 8 |  | vu | . . . . 5
setvar 𝑢 | 
| 9 | 4 | cv 1539 | . . . . . 6
class 𝑤 | 
| 10 |  | cdvh 41080 | . . . . . . 7
class
DVecH | 
| 11 | 5, 10 | cfv 6561 | . . . . . 6
class
(DVecH‘𝑘) | 
| 12 | 9, 11 | cfv 6561 | . . . . 5
class
((DVecH‘𝑘)‘𝑤) | 
| 13 |  | vv | . . . . . 6
setvar 𝑣 | 
| 14 | 8 | cv 1539 | . . . . . . 7
class 𝑢 | 
| 15 |  | cbs 17247 | . . . . . . 7
class
Base | 
| 16 | 14, 15 | cfv 6561 | . . . . . 6
class
(Base‘𝑢) | 
| 17 |  | cnx 17230 | . . . . . . . . . 10
class
ndx | 
| 18 | 17, 15 | cfv 6561 | . . . . . . . . 9
class
(Base‘ndx) | 
| 19 | 13 | cv 1539 | . . . . . . . . 9
class 𝑣 | 
| 20 | 18, 19 | cop 4632 | . . . . . . . 8
class
〈(Base‘ndx), 𝑣〉 | 
| 21 |  | cplusg 17297 | . . . . . . . . . 10
class
+g | 
| 22 | 17, 21 | cfv 6561 | . . . . . . . . 9
class
(+g‘ndx) | 
| 23 | 14, 21 | cfv 6561 | . . . . . . . . 9
class
(+g‘𝑢) | 
| 24 | 22, 23 | cop 4632 | . . . . . . . 8
class
〈(+g‘ndx), (+g‘𝑢)〉 | 
| 25 |  | csca 17300 | . . . . . . . . . 10
class
Scalar | 
| 26 | 17, 25 | cfv 6561 | . . . . . . . . 9
class
(Scalar‘ndx) | 
| 27 |  | cedring 40755 | . . . . . . . . . . . 12
class
EDRing | 
| 28 | 5, 27 | cfv 6561 | . . . . . . . . . . 11
class
(EDRing‘𝑘) | 
| 29 | 9, 28 | cfv 6561 | . . . . . . . . . 10
class
((EDRing‘𝑘)‘𝑤) | 
| 30 |  | cstv 17299 | . . . . . . . . . . . 12
class
*𝑟 | 
| 31 | 17, 30 | cfv 6561 | . . . . . . . . . . 11
class
(*𝑟‘ndx) | 
| 32 |  | chg 41885 | . . . . . . . . . . . . 13
class
HGMap | 
| 33 | 5, 32 | cfv 6561 | . . . . . . . . . . . 12
class
(HGMap‘𝑘) | 
| 34 | 9, 33 | cfv 6561 | . . . . . . . . . . 11
class
((HGMap‘𝑘)‘𝑤) | 
| 35 | 31, 34 | cop 4632 | . . . . . . . . . 10
class
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉 | 
| 36 |  | csts 17200 | . . . . . . . . . 10
class 
sSet | 
| 37 | 29, 35, 36 | co 7431 | . . . . . . . . 9
class
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉) | 
| 38 | 26, 37 | cop 4632 | . . . . . . . 8
class
〈(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉 | 
| 39 | 20, 24, 38 | ctp 4630 | . . . . . . 7
class
{〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} | 
| 40 |  | cvsca 17301 | . . . . . . . . . 10
class 
·𝑠 | 
| 41 | 17, 40 | cfv 6561 | . . . . . . . . 9
class (
·𝑠 ‘ndx) | 
| 42 | 14, 40 | cfv 6561 | . . . . . . . . 9
class (
·𝑠 ‘𝑢) | 
| 43 | 41, 42 | cop 4632 | . . . . . . . 8
class 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉 | 
| 44 |  | cip 17302 | . . . . . . . . . 10
class
·𝑖 | 
| 45 | 17, 44 | cfv 6561 | . . . . . . . . 9
class
(·𝑖‘ndx) | 
| 46 |  | vx | . . . . . . . . . 10
setvar 𝑥 | 
| 47 |  | vy | . . . . . . . . . 10
setvar 𝑦 | 
| 48 | 46 | cv 1539 | . . . . . . . . . . 11
class 𝑥 | 
| 49 | 47 | cv 1539 | . . . . . . . . . . . 12
class 𝑦 | 
| 50 |  | chdma 41794 | . . . . . . . . . . . . . 14
class
HDMap | 
| 51 | 5, 50 | cfv 6561 | . . . . . . . . . . . . 13
class
(HDMap‘𝑘) | 
| 52 | 9, 51 | cfv 6561 | . . . . . . . . . . . 12
class
((HDMap‘𝑘)‘𝑤) | 
| 53 | 49, 52 | cfv 6561 | . . . . . . . . . . 11
class
(((HDMap‘𝑘)‘𝑤)‘𝑦) | 
| 54 | 48, 53 | cfv 6561 | . . . . . . . . . 10
class
((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥) | 
| 55 | 46, 47, 19, 19, 54 | cmpo 7433 | . . . . . . . . 9
class (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) | 
| 56 | 45, 55 | cop 4632 | . . . . . . . 8
class
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉 | 
| 57 | 43, 56 | cpr 4628 | . . . . . . 7
class {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉} | 
| 58 | 39, 57 | cun 3949 | . . . . . 6
class
({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) | 
| 59 | 13, 16, 58 | csb 3899 | . . . . 5
class
⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) | 
| 60 | 8, 12, 59 | csb 3899 | . . . 4
class
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) | 
| 61 | 4, 7, 60 | cmpt 5225 | . . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) | 
| 62 | 2, 3, 61 | cmpt 5225 | . 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) | 
| 63 | 1, 62 | wceq 1540 | 1
wff HLHil =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |