Detailed syntax breakdown of Definition df-hlhil
Step | Hyp | Ref
| Expression |
1 | | chlh 39946 |
. 2
class
HLHil |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37998 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vu |
. . . . 5
setvar 𝑢 |
9 | 4 | cv 1538 |
. . . . . 6
class 𝑤 |
10 | | cdvh 39092 |
. . . . . . 7
class
DVecH |
11 | 5, 10 | cfv 6433 |
. . . . . 6
class
(DVecH‘𝑘) |
12 | 9, 11 | cfv 6433 |
. . . . 5
class
((DVecH‘𝑘)‘𝑤) |
13 | | vv |
. . . . . 6
setvar 𝑣 |
14 | 8 | cv 1538 |
. . . . . . 7
class 𝑢 |
15 | | cbs 16912 |
. . . . . . 7
class
Base |
16 | 14, 15 | cfv 6433 |
. . . . . 6
class
(Base‘𝑢) |
17 | | cnx 16894 |
. . . . . . . . . 10
class
ndx |
18 | 17, 15 | cfv 6433 |
. . . . . . . . 9
class
(Base‘ndx) |
19 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
20 | 18, 19 | cop 4567 |
. . . . . . . 8
class
〈(Base‘ndx), 𝑣〉 |
21 | | cplusg 16962 |
. . . . . . . . . 10
class
+g |
22 | 17, 21 | cfv 6433 |
. . . . . . . . 9
class
(+g‘ndx) |
23 | 14, 21 | cfv 6433 |
. . . . . . . . 9
class
(+g‘𝑢) |
24 | 22, 23 | cop 4567 |
. . . . . . . 8
class
〈(+g‘ndx), (+g‘𝑢)〉 |
25 | | csca 16965 |
. . . . . . . . . 10
class
Scalar |
26 | 17, 25 | cfv 6433 |
. . . . . . . . 9
class
(Scalar‘ndx) |
27 | | cedring 38767 |
. . . . . . . . . . . 12
class
EDRing |
28 | 5, 27 | cfv 6433 |
. . . . . . . . . . 11
class
(EDRing‘𝑘) |
29 | 9, 28 | cfv 6433 |
. . . . . . . . . 10
class
((EDRing‘𝑘)‘𝑤) |
30 | | cstv 16964 |
. . . . . . . . . . . 12
class
*𝑟 |
31 | 17, 30 | cfv 6433 |
. . . . . . . . . . 11
class
(*𝑟‘ndx) |
32 | | chg 39897 |
. . . . . . . . . . . . 13
class
HGMap |
33 | 5, 32 | cfv 6433 |
. . . . . . . . . . . 12
class
(HGMap‘𝑘) |
34 | 9, 33 | cfv 6433 |
. . . . . . . . . . 11
class
((HGMap‘𝑘)‘𝑤) |
35 | 31, 34 | cop 4567 |
. . . . . . . . . 10
class
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉 |
36 | | csts 16864 |
. . . . . . . . . 10
class
sSet |
37 | 29, 35, 36 | co 7275 |
. . . . . . . . 9
class
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉) |
38 | 26, 37 | cop 4567 |
. . . . . . . 8
class
〈(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉 |
39 | 20, 24, 38 | ctp 4565 |
. . . . . . 7
class
{〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} |
40 | | cvsca 16966 |
. . . . . . . . . 10
class
·𝑠 |
41 | 17, 40 | cfv 6433 |
. . . . . . . . 9
class (
·𝑠 ‘ndx) |
42 | 14, 40 | cfv 6433 |
. . . . . . . . 9
class (
·𝑠 ‘𝑢) |
43 | 41, 42 | cop 4567 |
. . . . . . . 8
class 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉 |
44 | | cip 16967 |
. . . . . . . . . 10
class
·𝑖 |
45 | 17, 44 | cfv 6433 |
. . . . . . . . 9
class
(·𝑖‘ndx) |
46 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
47 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
48 | 46 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
49 | 47 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
50 | | chdma 39806 |
. . . . . . . . . . . . . 14
class
HDMap |
51 | 5, 50 | cfv 6433 |
. . . . . . . . . . . . 13
class
(HDMap‘𝑘) |
52 | 9, 51 | cfv 6433 |
. . . . . . . . . . . 12
class
((HDMap‘𝑘)‘𝑤) |
53 | 49, 52 | cfv 6433 |
. . . . . . . . . . 11
class
(((HDMap‘𝑘)‘𝑤)‘𝑦) |
54 | 48, 53 | cfv 6433 |
. . . . . . . . . 10
class
((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥) |
55 | 46, 47, 19, 19, 54 | cmpo 7277 |
. . . . . . . . 9
class (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) |
56 | 45, 55 | cop 4567 |
. . . . . . . 8
class
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉 |
57 | 43, 56 | cpr 4563 |
. . . . . . 7
class {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉} |
58 | 39, 57 | cun 3885 |
. . . . . 6
class
({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) |
59 | 13, 16, 58 | csb 3832 |
. . . . 5
class
⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) |
60 | 8, 12, 59 | csb 3832 |
. . . 4
class
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) |
61 | 4, 7, 60 | cmpt 5157 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) |
62 | 2, 3, 61 | cmpt 5157 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
63 | 1, 62 | wceq 1539 |
1
wff HLHil =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |