Step | Hyp | Ref
| Expression |
1 | | hlhilset.l |
. 2
⊢ 𝐿 = ((HLHil‘𝐾)‘𝑊) |
2 | | hlhilset.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | elex 3461 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ V) |
4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ V) |
5 | 2, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ V) |
6 | | hlhilset.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
7 | 6 | fvexi 6853 |
. . . . 5
⊢ 𝐻 ∈ V |
8 | 7 | mptex 7169 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) ∈ V |
9 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑘𝐾 |
10 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑘𝐻 |
11 | | nfcsb1v 3878 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) |
12 | 10, 11 | nfmpt 5210 |
. . . . 5
⊢
Ⅎ𝑘(𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) |
13 | | fveq2 6839 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
14 | 13, 6 | eqtr4di 2795 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
15 | | csbeq1a 3867 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) |
16 | 14, 15 | mpteq12dv 5194 |
. . . . 5
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}))) |
17 | | df-hlhil 40334 |
. . . . 5
⊢ HLHil =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}))) |
18 | 9, 12, 16, 17 | fvmptf 6966 |
. . . 4
⊢ ((𝐾 ∈ V ∧ (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) ∈ V) → (HLHil‘𝐾) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}))) |
19 | 5, 8, 18 | sylancl 586 |
. . 3
⊢ (𝜑 → (HLHil‘𝐾) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}))) |
20 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 = 𝑊) → 𝐾 ∈ V) |
21 | | fvexd 6854 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) ∈ V) |
22 | | fvexd 6854 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) ∈ V) |
23 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑢) → 𝑣 = (Base‘𝑢)) |
24 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ((DVecH‘𝑘)‘𝑤) → 𝑢 = ((DVecH‘𝑘)‘𝑤)) |
25 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) |
26 | 25 | fveq2d 6843 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (DVecH‘𝑘) = (DVecH‘𝐾)) |
27 | | simplr 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊) |
28 | 26, 27 | fveq12d 6846 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
29 | | hlhilset.u |
. . . . . . . . . . . . . 14
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
30 | 28, 29 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = 𝑈) |
31 | 24, 30 | sylan9eqr 2799 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → 𝑢 = 𝑈) |
32 | 31 | fveq2d 6843 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = (Base‘𝑈)) |
33 | | hlhilset.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑈) |
34 | 32, 33 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = 𝑉) |
35 | 23, 34 | sylan9eqr 2799 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉) |
36 | 35 | opeq2d 4835 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(Base‘ndx), 𝑣⟩ = ⟨(Base‘ndx),
𝑉⟩) |
37 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈) |
38 | 37 | fveq2d 6843 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g‘𝑢) = (+g‘𝑈)) |
39 | | hlhilset.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑈) |
40 | 38, 39 | eqtr4di 2795 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g‘𝑢) = + ) |
41 | 40 | opeq2d 4835 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(+g‘ndx),
(+g‘𝑢)⟩ = ⟨(+g‘ndx),
+
⟩) |
42 | 25 | fveq2d 6843 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (EDRing‘𝑘) = (EDRing‘𝐾)) |
43 | 42, 27 | fveq12d 6846 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = ((EDRing‘𝐾)‘𝑊)) |
44 | | hlhilset.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
45 | 43, 44 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = 𝐸) |
46 | 25 | fveq2d 6843 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HGMap‘𝑘) = (HGMap‘𝐾)) |
47 | 46, 27 | fveq12d 6846 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = ((HGMap‘𝐾)‘𝑊)) |
48 | | hlhilset.g |
. . . . . . . . . . . . . 14
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
49 | 47, 48 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = 𝐺) |
50 | 49 | opeq2d 4835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) →
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩ =
⟨(*𝑟‘ndx), 𝐺⟩) |
51 | 45, 50 | oveq12d 7369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩) = (𝐸 sSet
⟨(*𝑟‘ndx), 𝐺⟩)) |
52 | | hlhilset.r |
. . . . . . . . . . 11
⊢ 𝑅 = (𝐸 sSet
⟨(*𝑟‘ndx), 𝐺⟩) |
53 | 51, 52 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩) = 𝑅) |
54 | 53 | opeq2d 4835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩ = ⟨(Scalar‘ndx),
𝑅⟩) |
55 | 54 | ad2antrr 724 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩ = ⟨(Scalar‘ndx),
𝑅⟩) |
56 | 36, 41, 55 | tpeq123d 4707 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} = {⟨(Base‘ndx),
𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩}) |
57 | 37 | fveq2d 6843 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (
·𝑠 ‘𝑢) = ( ·𝑠
‘𝑈)) |
58 | | hlhilset.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑈) |
59 | 57, 58 | eqtr4di 2795 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (
·𝑠 ‘𝑢) = · ) |
60 | 59 | opeq2d 4835 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩ = ⟨(
·𝑠 ‘ndx), ·
⟩) |
61 | 25 | fveq2d 6843 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HDMap‘𝑘) = (HDMap‘𝐾)) |
62 | 61, 27 | fveq12d 6846 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = ((HDMap‘𝐾)‘𝑊)) |
63 | | hlhilset.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
64 | 62, 63 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = 𝑆) |
65 | 64 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((HDMap‘𝑘)‘𝑤) = 𝑆) |
66 | 65 | fveq1d 6841 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (((HDMap‘𝑘)‘𝑤)‘𝑦) = (𝑆‘𝑦)) |
67 | 66 | fveq1d 6841 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥) = ((𝑆‘𝑦)‘𝑥)) |
68 | 35, 35, 67 | mpoeq123dv 7426 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))) |
69 | | hlhilset.i |
. . . . . . . . . 10
⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) |
70 | 68, 69 | eqtr4di 2795 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = , ) |
71 | 70 | opeq2d 4835 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) →
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩ =
⟨(·𝑖‘ndx), , ⟩) |
72 | 60, 71 | preq12d 4700 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩} = {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩}) |
73 | 56, 72 | uneq12d 4122 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩})) |
74 | 22, 73 | csbied 3891 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → ⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx),
𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩})) |
75 | 21, 74 | csbied 3891 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩})) |
76 | 20, 75 | csbied 3891 |
. . 3
⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({⟨(Base‘ndx), 𝑣⟩,
⟨(+g‘ndx), (+g‘𝑢)⟩, ⟨(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)⟩,
⟨(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩})) |
77 | 2 | simprd 496 |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝐻) |
78 | | tpex 7673 |
. . . . 5
⊢
{⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx),
+ ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∈ V |
79 | | prex 5387 |
. . . . 5
⊢ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩} ∈
V |
80 | 78, 79 | unex 7672 |
. . . 4
⊢
({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx),
+ ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩}) ∈
V |
81 | 80 | a1i 11 |
. . 3
⊢ (𝜑 → ({⟨(Base‘ndx),
𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩}) ∈
V) |
82 | 19, 76, 77, 81 | fvmptd 6952 |
. 2
⊢ (𝜑 → ((HLHil‘𝐾)‘𝑊) = ({⟨(Base‘ndx), 𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩})) |
83 | 1, 82 | eqtrid 2789 |
1
⊢ (𝜑 → 𝐿 = ({⟨(Base‘ndx), 𝑉⟩,
⟨(+g‘ndx), + ⟩,
⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨(
·𝑠 ‘ndx), · ⟩,
⟨(·𝑖‘ndx), , ⟩})) |