| Step | Hyp | Ref
| Expression |
| 1 | | hlhilset.l |
. 2
⊢ 𝐿 = ((HLHil‘𝐾)‘𝑊) |
| 2 | | hlhilset.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | | elex 3501 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ V) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ V) |
| 5 | 2, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ V) |
| 6 | | hlhilset.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | 6 | fvexi 6920 |
. . . . 5
⊢ 𝐻 ∈ V |
| 8 | 7 | mptex 7243 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) ∈ V |
| 9 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑘𝐾 |
| 10 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑘𝐻 |
| 11 | | nfcsb1v 3923 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) |
| 12 | 10, 11 | nfmpt 5249 |
. . . . 5
⊢
Ⅎ𝑘(𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) |
| 13 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
| 14 | 13, 6 | eqtr4di 2795 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
| 15 | | csbeq1a 3913 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) |
| 16 | 14, 15 | mpteq12dv 5233 |
. . . . 5
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
| 17 | | df-hlhil 41935 |
. . . . 5
⊢ HLHil =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
| 18 | 9, 12, 16, 17 | fvmptf 7037 |
. . . 4
⊢ ((𝐾 ∈ V ∧ (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉})) ∈ V) → (HLHil‘𝐾) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
| 19 | 5, 8, 18 | sylancl 586 |
. . 3
⊢ (𝜑 → (HLHil‘𝐾) = (𝑤 ∈ 𝐻 ↦ ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
| 20 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 = 𝑊) → 𝐾 ∈ V) |
| 21 | | fvexd 6921 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) ∈ V) |
| 22 | | fvexd 6921 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) ∈ V) |
| 23 | | id 22 |
. . . . . . . . . 10
⊢ (𝑣 = (Base‘𝑢) → 𝑣 = (Base‘𝑢)) |
| 24 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ((DVecH‘𝑘)‘𝑤) → 𝑢 = ((DVecH‘𝑘)‘𝑤)) |
| 25 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) |
| 26 | 25 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (DVecH‘𝑘) = (DVecH‘𝐾)) |
| 27 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊) |
| 28 | 26, 27 | fveq12d 6913 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
| 29 | | hlhilset.u |
. . . . . . . . . . . . . 14
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 30 | 28, 29 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = 𝑈) |
| 31 | 24, 30 | sylan9eqr 2799 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → 𝑢 = 𝑈) |
| 32 | 31 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = (Base‘𝑈)) |
| 33 | | hlhilset.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑈) |
| 34 | 32, 33 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = 𝑉) |
| 35 | 23, 34 | sylan9eqr 2799 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉) |
| 36 | 35 | opeq2d 4880 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(Base‘ndx), 𝑣〉 = 〈(Base‘ndx),
𝑉〉) |
| 37 | 31 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈) |
| 38 | 37 | fveq2d 6910 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g‘𝑢) = (+g‘𝑈)) |
| 39 | | hlhilset.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑈) |
| 40 | 38, 39 | eqtr4di 2795 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g‘𝑢) = + ) |
| 41 | 40 | opeq2d 4880 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(+g‘ndx),
(+g‘𝑢)〉 = 〈(+g‘ndx),
+
〉) |
| 42 | 25 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (EDRing‘𝑘) = (EDRing‘𝐾)) |
| 43 | 42, 27 | fveq12d 6913 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = ((EDRing‘𝐾)‘𝑊)) |
| 44 | | hlhilset.e |
. . . . . . . . . . . . 13
⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
| 45 | 43, 44 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = 𝐸) |
| 46 | 25 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HGMap‘𝑘) = (HGMap‘𝐾)) |
| 47 | 46, 27 | fveq12d 6913 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = ((HGMap‘𝐾)‘𝑊)) |
| 48 | | hlhilset.g |
. . . . . . . . . . . . . 14
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| 49 | 47, 48 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = 𝐺) |
| 50 | 49 | opeq2d 4880 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) →
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉 =
〈(*𝑟‘ndx), 𝐺〉) |
| 51 | 45, 50 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉) = (𝐸 sSet
〈(*𝑟‘ndx), 𝐺〉)) |
| 52 | | hlhilset.r |
. . . . . . . . . . 11
⊢ 𝑅 = (𝐸 sSet
〈(*𝑟‘ndx), 𝐺〉) |
| 53 | 51, 52 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉) = 𝑅) |
| 54 | 53 | opeq2d 4880 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉 = 〈(Scalar‘ndx),
𝑅〉) |
| 55 | 54 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉 = 〈(Scalar‘ndx),
𝑅〉) |
| 56 | 36, 41, 55 | tpeq123d 4748 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} = {〈(Base‘ndx),
𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉}) |
| 57 | 37 | fveq2d 6910 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (
·𝑠 ‘𝑢) = ( ·𝑠
‘𝑈)) |
| 58 | | hlhilset.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑈) |
| 59 | 57, 58 | eqtr4di 2795 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (
·𝑠 ‘𝑢) = · ) |
| 60 | 59 | opeq2d 4880 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉 = 〈(
·𝑠 ‘ndx), ·
〉) |
| 61 | 25 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HDMap‘𝑘) = (HDMap‘𝐾)) |
| 62 | 61, 27 | fveq12d 6913 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = ((HDMap‘𝐾)‘𝑊)) |
| 63 | | hlhilset.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| 64 | 62, 63 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = 𝑆) |
| 65 | 64 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((HDMap‘𝑘)‘𝑤) = 𝑆) |
| 66 | 65 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (((HDMap‘𝑘)‘𝑤)‘𝑦) = (𝑆‘𝑦)) |
| 67 | 66 | fveq1d 6908 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥) = ((𝑆‘𝑦)‘𝑥)) |
| 68 | 35, 35, 67 | mpoeq123dv 7508 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥))) |
| 69 | | hlhilset.i |
. . . . . . . . . 10
⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) |
| 70 | 68, 69 | eqtr4di 2795 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = , ) |
| 71 | 70 | opeq2d 4880 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) →
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉 =
〈(·𝑖‘ndx), , 〉) |
| 72 | 60, 71 | preq12d 4741 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉} = {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) |
| 73 | 56, 72 | uneq12d 4169 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
| 74 | 22, 73 | csbied 3935 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → ⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
| 75 | 21, 74 | csbied 3935 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
| 76 | 20, 75 | csbied 3935 |
. . 3
⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ⦋𝐾 / 𝑘⦌⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet
〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
| 77 | 2 | simprd 495 |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝐻) |
| 78 | | tpex 7766 |
. . . . 5
⊢
{〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx),
+ 〉,
〈(Scalar‘ndx), 𝑅〉} ∈ V |
| 79 | | prex 5437 |
. . . . 5
⊢ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉} ∈
V |
| 80 | 78, 79 | unex 7764 |
. . . 4
⊢
({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx),
+ 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V |
| 81 | 80 | a1i 11 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉}) ∈
V) |
| 82 | 19, 76, 77, 81 | fvmptd 7023 |
. 2
⊢ (𝜑 → ((HLHil‘𝐾)‘𝑊) = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |
| 83 | 1, 82 | eqtrid 2789 |
1
⊢ (𝜑 → 𝐿 = ({〈(Base‘ndx), 𝑉〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝑅〉} ∪ {〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), , 〉})) |