![]() |
Metamath
Proof Explorer Theorem List (p. 412 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mbfres2cn 41101 | Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 23849 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | vol0 41102 | The measure of the empty set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (vol‘∅) = 0 | ||
Theorem | ditgeqiooicc 41103* | A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) | ||
Theorem | volge0 41104 | The volume of a set is always nonnegative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ dom vol → 0 ≤ (vol‘𝐴)) | ||
Theorem | cnbdibl 41105* | A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → (vol‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | snmbl 41106 | A singleton is measurable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → {𝐴} ∈ dom vol) | ||
Theorem | ditgeq3d 41107* | Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
Theorem | iblempty 41108 | The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ∅ ∈ 𝐿1 | ||
Theorem | iblsplit 41109* | The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | volsn 41110 | A singleton has 0 Lebesgue measure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → (vol‘{𝐴}) = 0) | ||
Theorem | itgvol0 41111* | If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ∧ ∫𝐴𝐵 d𝑥 = 0)) | ||
Theorem | itgcoscmulx 41112* | Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴)) | ||
Theorem | iblsplitf 41113* | A version of iblsplit 41109 using bound-variable hypotheses instead of distinct variable conditions" (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | ibliooicc 41114* | If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) | ||
Theorem | volioc 41115 | The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | iblspltprt 41116* | If a function is integrable on any interval of a partition, then it is integrable on the whole interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑡𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝑃‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁))) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁)) ↦ 𝐴) ∈ 𝐿1) | ||
Theorem | itgsincmulx 41117* | Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴)) | ||
Theorem | itgsubsticclem 41118* | lemma for itgsubsticc 41119. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) & ⊢ 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ≤ 𝐿) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
Theorem | itgsubsticc 41119* | Integration by u-substitution. The main difference with respect to itgsubst 24249 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) & ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
Theorem | itgioocnicc 41120* | The integral of a piecewise continuous function 𝐹 on an open interval is equal to the integral of the continuous function 𝐺, in the corresponding closed interval. 𝐺 is equal to 𝐹 on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴)) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) | ||
Theorem | iblcncfioo 41121 | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
Theorem | itgspltprt 41122* | The ∫ integral splits on a given partition 𝑃. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑃:(𝑀...𝑁)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁))) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫((𝑃‘𝑀)[,](𝑃‘𝑁))𝐴 d𝑡 = Σ𝑖 ∈ (𝑀..^𝑁)∫((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1)))𝐴 d𝑡) | ||
Theorem | itgiccshift 41123* | The integral of a function, 𝐹 stays the same if its closed interval domain is shifted by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | itgperiod 41124* | The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | itgsbtaddcnst 41125* | Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) | ||
Theorem | itgeq2d 41126* | Equality theorem for an integral. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥) | ||
Theorem | volico 41127 | The measure of left-closed, right-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | ||
Theorem | sublevolico 41128 | The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) | ||
Theorem | dmvolss 41129 | Lebesgue measurable sets are subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ dom vol ⊆ 𝒫 ℝ | ||
Theorem | ismbl3 41130* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 23731, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) | ||
Theorem | volioof 41131 | The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | ||
Theorem | ovolsplit 41132 | The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) | ||
Theorem | fvvolioof 41133 | The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) | ||
Theorem | volioore 41134 | The measure of an open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) | ||
Theorem | fvvolicof 41135 | The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | ||
Theorem | voliooico 41136 | An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
Theorem | ismbl4 41137* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 23730, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))))) | ||
Theorem | volioofmpt 41138* | ((vol ∘ (,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))))) | ||
Theorem | volicoff 41139 | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) | ||
Theorem | voliooicof 41140 | The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) | ||
Theorem | volicofmpt 41141* | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) | ||
Theorem | volicc 41142 | The Lebesgue measure of a closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | voliccico 41143 | A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
Theorem | mbfdmssre 41144 | The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | ||
Theorem | stoweidlem1 41145 | Lemma for stoweid 41207. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90; the key step uses Bernoulli's inequality bernneq 13309. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) & ⊢ (𝜑 → 𝐷 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((1 − (𝐴↑𝑁))↑(𝐾↑𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) | ||
Theorem | stoweidlem2 41146* | lemma for stoweid 41207: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (𝐸 · (𝐹‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem3 41147* | Lemma for stoweid 41207: if 𝐴 is positive and all 𝑀 terms of a finite product are larger than 𝐴, then the finite product is larger than A^M. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐹 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝑋 = seq1( · , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) | ||
Theorem | stoweidlem4 41148* | Lemma for stoweid 41207: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) | ||
Theorem | stoweidlem5 41149* | There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑄 ⊆ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) ⇒ ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) | ||
Theorem | stoweidlem6 41150* | Lemma for stoweid 41207: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡 𝑓 = 𝐹 & ⊢ Ⅎ𝑡 𝑔 = 𝐺 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem7 41151* | This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) & ⊢ 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸)) | ||
Theorem | stoweidlem8 41152* | Lemma for stoweid 41207: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem9 41153* | Lemma for stoweid 41207: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝑇 = ∅) & ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
Theorem | stoweidlem10 41154 | Lemma for stoweid 41207. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) | ||
Theorem | stoweidlem11 41155* | This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑡 ∈ 𝑇) & ⊢ (𝜑 → 𝑗 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → (𝑋‘𝑖):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → ((𝑋‘𝑖)‘𝑡) ≤ 1) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑋‘𝑖)‘𝑡) < (𝐸 / 𝑁)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | ||
Theorem | stoweidlem12 41156* | Lemma for stoweid 41207. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) | ||
Theorem | stoweidlem13 41157 | Lemma for stoweid 41207. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑗 ∈ ℝ) & ⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋) & ⊢ (𝜑 → 𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸)) & ⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌) & ⊢ (𝜑 → 𝑌 < ((𝑗 + (1 / 3)) · 𝐸)) ⇒ ⊢ (𝜑 → (abs‘(𝑌 − 𝑋)) < (2 · 𝐸)) | ||
Theorem | stoweidlem14 41158* | There exists a 𝑘 as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 𝑘 is an integer and 1 < k * δ < 2. 𝐷 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝐴 = {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) | ||
Theorem | stoweidlem15 41159* | This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p(t_0) = 0, and p > 0 on T - U. Here (𝐺‘𝐼) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (((𝐺‘𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) | ||
Theorem | stoweidlem16 41160* | Lemma for stoweid 41207. The subset 𝑌 of functions in the algebra 𝐴, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → 𝐻 ∈ 𝑌) | ||
Theorem | stoweidlem17 41161* | This lemma proves that the function 𝑔 (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem18 41162* | This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐷 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
Theorem | stoweidlem19 41163* | If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴) | ||
Theorem | stoweidlem20 41164* | If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
Theorem | stoweidlem21 41165* | Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐺 & ⊢ Ⅎ𝑡𝐻 & ⊢ Ⅎ𝑡𝑆 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐺 = (𝑡 ∈ 𝑇 ↦ ((𝐻‘𝑡) + 𝑆)) & ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑆 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑓 ∈ 𝐴 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐻 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (abs‘((𝐻‘𝑡) − ((𝐹‘𝑡) − 𝑆))) < 𝐸) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
Theorem | stoweidlem22 41166* | If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) & ⊢ 𝐼 = (𝑡 ∈ 𝑇 ↦ -1) & ⊢ 𝐿 = (𝑡 ∈ 𝑇 ↦ ((𝐼‘𝑡) · (𝐺‘𝑡))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem23 41167* | This lemma is used to prove the existence of a function pt as in the beginning of Lemma 1 [BrosowskiDeutsh] p. 90: for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝐺 & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝑇) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → (𝐺‘𝑆) ≠ (𝐺‘𝑍)) ⇒ ⊢ (𝜑 → (𝐻 ∈ 𝐴 ∧ (𝐻‘𝑆) ≠ (𝐻‘𝑍) ∧ (𝐻‘𝑍) = 0)) | ||
Theorem | stoweidlem24 41168* | This lemma proves that for 𝑛 sufficiently large, qn( t ) > ( 1 - epsilon ), for all 𝑡 in 𝑉: see Lemma 1 [BrosowskiDeutsh] p. 90, (at the bottom of page 90). 𝑄 is used to represent qn in the paper, 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁))) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (1 − 𝐸) < (𝑄‘𝑡)) | ||
Theorem | stoweidlem25 41169* | This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇 ∖ 𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) < 𝐸) | ||
Theorem | stoweidlem26 41170* | This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here 𝐿 is used to represnt j in the paper, 𝐷 is used to represent A in the paper, 𝑆 is used to represent t, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) & ⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑆 ∈ ((𝐷‘𝐿) ∖ (𝐷‘(𝐿 − 1)))) & ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → (𝑋‘𝑖):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝑋‘𝑖)‘𝑡)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵‘𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋‘𝑖)‘𝑡)) ⇒ ⊢ (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑆)) | ||
Theorem | stoweidlem27 41171* | This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here (𝑞‘𝑖) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝐺 = (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) & ⊢ (𝜑 → 𝑄 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑌 Fn ran 𝐺) & ⊢ (𝜑 → ran 𝐺 ∈ V) & ⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑙) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→ran 𝐺) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑋) & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎℎ𝑄 ⇒ ⊢ (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡)))) | ||
Theorem | stoweidlem28 41172* | There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 𝑇 ∖ 𝑈. Here 𝑑 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑃‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) | ||
Theorem | stoweidlem29 41173* | When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑇 ≠ ∅) ⇒ ⊢ (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑡))) | ||
Theorem | stoweidlem30 41174* | This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) | ||
Theorem | stoweidlem31 41175* | This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑅 is a finite subset of 𝑉, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all 𝑖 ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here M is used to represent m in the paper, 𝐸 is used to represent ε in the paper, vi is used to represent V(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎℎ𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ 𝐺 = (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) & ⊢ (𝜑 → 𝑅 ⊆ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑣:(1...𝑀)–1-1-onto→𝑅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ⊆ (𝑇 ∖ 𝑈)) & ⊢ (𝜑 → 𝑉 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → ran 𝐺 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)))) | ||
Theorem | stoweidlem32 41176* | If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝐴) | ||
Theorem | stoweidlem33 41177* | If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 & ⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) | ||
Theorem | stoweidlem34 41178* | This lemma proves that for all 𝑡 in 𝑇 there is a 𝑗 as in the proof of [BrosowskiDeutsh] p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) & ⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) & ⊢ 𝐽 = (𝑡 ∈ 𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷‘𝑗)}) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 0 ≤ (𝐹‘𝑡)) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) < ((𝑁 − 1) · 𝐸)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑋‘𝑗):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝑋‘𝑗)‘𝑡)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ 𝑇) → ((𝑋‘𝑗)‘𝑡) ≤ 1) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷‘𝑗)) → ((𝑋‘𝑗)‘𝑡) < (𝐸 / 𝑁)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋‘𝑗)‘𝑡)) ⇒ ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡)))) | ||
Theorem | stoweidlem35 41179* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here (𝑞‘𝑖) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎℎ𝜑 & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝐺 = (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ⊆ 𝑊) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑋) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑚∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) | ||
Theorem | stoweidlem36 41180* | This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎℎ𝑄 & ⊢ Ⅎ𝑡𝐻 & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐺 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐹‘𝑡))) & ⊢ 𝑁 = sup(ran 𝐺, ℝ, < ) & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) / 𝑁)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝑇) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝑆) ≠ (𝐹‘𝑍)) & ⊢ (𝜑 → (𝐹‘𝑍) = 0) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) | ||
Theorem | stoweidlem37 41181* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑃‘𝑍) = 0) | ||
Theorem | stoweidlem38 41182* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (0 ≤ (𝑃‘𝑆) ∧ (𝑃‘𝑆) ≤ 1)) | ||
Theorem | stoweidlem39 41183* | This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑟 is a finite subset of 𝑊, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here 𝐷 is used to represent A in the paper's Lemma 2 (because 𝐴 is used for the subalgebra), 𝑀 is used to represent m in the paper, 𝐸 is used to represent ε, and vi is used to represent V(ti). 𝑊 is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎℎ𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ 𝑈 = (𝑇 ∖ 𝐵) & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ (𝜑 → 𝑟 ∈ (𝒫 𝑊 ∩ Fin)) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑟) & ⊢ (𝜑 → 𝐷 ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) & ⊢ (𝜑 → 𝑊 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥‘𝑖)‘𝑡))))) | ||
Theorem | stoweidlem40 41184* | This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑃 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑𝑀)) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (1 − ((𝑃‘𝑡)↑𝑁))) & ⊢ 𝐺 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝑃‘𝑡)↑𝑁)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐴) | ||
Theorem | stoweidlem41 41185* | This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn". Here 𝐸 is used to represent ε in the paper, and 𝑦 to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝜑 & ⊢ 𝑋 = (𝑡 ∈ 𝑇 ↦ (1 − (𝑦‘𝑡))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝑉 ⊆ 𝑇 & ⊢ (𝜑 → 𝑦 ∈ 𝐴) & ⊢ (𝜑 → 𝑦:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑤) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑉 (1 − 𝐸) < (𝑦‘𝑡)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝐸) < (𝑥‘𝑡))) | ||
Theorem | stoweidlem42 41186* | This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) ⇒ ⊢ (𝜑 → ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)) | ||
Theorem | stoweidlem43 41187* | This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑔𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎℎ𝑄 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑙‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ (𝑇 ∖ 𝑈)) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) | ||
Theorem | stoweidlem44 41188* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺‘𝑗)‘𝑡)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) | ||
Theorem | stoweidlem45 41189* | This lemma proves that, given an appropriate 𝐾 (in another theorem we prove such a 𝐾 exists), there exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 ( at the top of page 91): 0 <= qn <= 1 , qn < ε on T \ U, and qn > 1 - ε on 𝑉. We use y to represent the final qn in the paper (the one with n large enough), 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, 𝐸 to represent ε, and 𝑃 to represent 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑃 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁))) & ⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝐸) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝐸)) | ||
Theorem | stoweidlem46 41190* | This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎℎ𝑄 & ⊢ Ⅎ𝑞𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ V) ⇒ ⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑊) | ||
Theorem | stoweidlem47 41191* | Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝑆 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐺 = (𝑇 × {-𝑆}) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝑆 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) | ||
Theorem | stoweidlem48 41192* | This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on 𝐴. Here 𝑋 is used to represent 𝑥 in the paper, 𝐸 is used to represent ε in the paper, and 𝐷 is used to represent 𝐴 in the paper (because 𝐴 is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ (𝜑 → 𝐷 ⊆ ∪ ran 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝑇) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < 𝐸) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸) | ||
Theorem | stoweidlem49 41193* | There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here y is used to represent the final qn in the paper (the one with n large enough), 𝑁 represents 𝑛 in the paper, 𝐾 represents 𝑘, 𝐷 represents δ, 𝐸 represents ε, and 𝑃 represents 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑃 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝐸) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝐸)) | ||
Theorem | stoweidlem50 41194* | This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) | ||
Theorem | stoweidlem51 41195* | There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑤𝑉 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) & ⊢ (𝜑 → 𝐷 ⊆ ∪ ran 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝑇) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < (𝐸 / 𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) | ||
Theorem | stoweidlem52 41196* | There exists a neighborood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝑃 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → (𝑃‘𝑍) = 0) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) | ||
Theorem | stoweidlem53 41197* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ≠ ∅) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) | ||
Theorem | stoweidlem54 41198* | There exists a function 𝑥 as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) & ⊢ (𝜑 → 𝐷 ⊆ ∪ ran 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝑇) & ⊢ (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
Theorem | stoweidlem55 41199* | This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) | ||
Theorem | stoweidlem56 41200* | This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here 𝑍 is used to represent t0 in the paper, 𝑣 is used to represent 𝑉 in the paper, and 𝑒 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |