Home | Metamath
Proof Explorer Theorem List (p. 412 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ifpdfxor 41101 | Define xor as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ if-(𝜑, ¬ 𝜓, 𝜓)) | ||
Theorem | ifpbi12 41102 | Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜏))) | ||
Theorem | ifpbi13 41103 | Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜑, 𝜏, 𝜒) ↔ if-(𝜓, 𝜏, 𝜃))) | ||
Theorem | ifpbi123 41104 | Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂))) | ||
Theorem | ifpidg 41105 | Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜃 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((((𝜑 ∧ 𝜓) → 𝜃) ∧ ((𝜑 ∧ 𝜃) → 𝜓)) ∧ ((𝜒 → (𝜑 ∨ 𝜃)) ∧ (𝜃 → (𝜑 ∨ 𝜒))))) | ||
Theorem | ifpid3g 41106 | Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑 ∧ 𝜓) → 𝜒) ∧ ((𝜑 ∧ 𝜒) → 𝜓))) | ||
Theorem | ifpid2g 41107 | Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜓 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜓 → (𝜑 ∨ 𝜒)) ∧ (𝜒 → (𝜑 ∨ 𝜓)))) | ||
Theorem | ifpid1g 41108 | Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((𝜑 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜒 → 𝜑) ∧ (𝜑 → 𝜓))) | ||
Theorem | ifpim23g 41109 | Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
⊢ (((𝜑 → 𝜓) ↔ if-(𝜒, 𝜓, ¬ 𝜑)) ↔ (((𝜑 ∧ 𝜓) → 𝜒) ∧ (𝜒 → (𝜑 ∨ 𝜓)))) | ||
Theorem | ifpim3 41110 | Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
⊢ ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑)) | ||
Theorem | ifpnim1 41111 | Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
⊢ (¬ (𝜑 → 𝜓) ↔ if-(𝜑, ¬ 𝜓, 𝜑)) | ||
Theorem | ifpim4 41112 | Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
⊢ ((𝜑 → 𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑)) | ||
Theorem | ifpnim2 41113 | Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
⊢ (¬ (𝜑 → 𝜓) ↔ if-(𝜓, ¬ 𝜓, 𝜑)) | ||
Theorem | ifpim123g 41114 | Implication of conditional logical operators. The right hand side is basically conjunctive normal form which is useful in proofs. (Contributed by RP, 16-Apr-2020.) |
⊢ ((if-(𝜑, 𝜒, 𝜏) → if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒 → 𝜃)) ∧ ((𝜓 → 𝜑) ∨ (𝜏 → 𝜃))) ∧ (((𝜑 → 𝜓) ∨ (𝜒 → 𝜂)) ∧ ((¬ 𝜓 → 𝜑) ∨ (𝜏 → 𝜂))))) | ||
Theorem | ifpim1g 41115 | Implication of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
⊢ ((if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)) ↔ (((𝜓 → 𝜑) ∨ (𝜃 → 𝜒)) ∧ ((𝜑 → 𝜓) ∨ (𝜒 → 𝜃)))) | ||
Theorem | ifp1bi 41116 | Substitute the first element of conditional logical operator. (Contributed by RP, 20-Apr-2020.) |
⊢ ((if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)) ↔ ((((𝜑 → 𝜓) ∨ (𝜒 → 𝜃)) ∧ ((𝜑 → 𝜓) ∨ (𝜃 → 𝜒))) ∧ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜃)) ∧ ((𝜓 → 𝜑) ∨ (𝜃 → 𝜒))))) | ||
Theorem | ifpbi1b 41117 | When the first variable is irrelevant, it can be replaced. (Contributed by RP, 25-Apr-2020.) |
⊢ (if-(𝜑, 𝜒, 𝜒) ↔ if-(𝜓, 𝜒, 𝜒)) | ||
Theorem | ifpimimb 41118 | Factor conditional logic operator over implication in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpororb 41119 | Factor conditional logic operator over disjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ∨ 𝜒), (𝜃 ∨ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∨ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpananb 41120 | Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ∧ 𝜒), (𝜃 ∧ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpnannanb 41121 | Factor conditional logic operator over nand in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ⊼ 𝜒), (𝜃 ⊼ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊼ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpor123g 41122 | Disjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
⊢ ((if-(𝜑, 𝜒, 𝜏) ∨ if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒 ∨ 𝜃)) ∧ ((𝜓 → 𝜑) ∨ (𝜏 ∨ 𝜃))) ∧ (((𝜑 → 𝜓) ∨ (𝜒 ∨ 𝜂)) ∧ ((¬ 𝜓 → 𝜑) ∨ (𝜏 ∨ 𝜂))))) | ||
Theorem | ifpimim 41123 | Consequnce of implication. (Contributed by RP, 17-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpbibib 41124 | Factor conditional logic operator over biconditional in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpxorxorb 41125 | Factor conditional logic operator over xor in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ⊻ 𝜒), (𝜃 ⊻ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | rp-fakeimass 41126 | A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
⊢ ((𝜑 ∨ 𝜒) ↔ (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) | ||
Theorem | rp-fakeanorass 41127 | A special case where a mixture of and and or appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.) |
⊢ ((𝜒 → 𝜑) ↔ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ (𝜑 ∧ (𝜓 ∨ 𝜒)))) | ||
Theorem | rp-fakeoranass 41128 | A special case where a mixture of or and and appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
⊢ ((𝜑 → 𝜒) ↔ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∨ (𝜓 ∧ 𝜒)))) | ||
Theorem | rp-fakeinunass 41129 | A special case where a mixture of intersection and union appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.) |
⊢ (𝐶 ⊆ 𝐴 ↔ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐴 ∩ (𝐵 ∪ 𝐶))) | ||
Theorem | rp-fakeuninass 41130 | A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) | ||
Membership in the class of finite sets can be expressed in many ways. | ||
Theorem | rp-isfinite5 41131* | A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.) |
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) | ||
Theorem | rp-isfinite6 41132* | A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.) |
⊢ (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)) | ||
Theorem | intabssd 41133* | When for each element 𝑦 there is a subset 𝐴 which may substituted for 𝑥 such that 𝑦 satisfying 𝜒 implies 𝑥 satisfies 𝜓 then the intersection of all 𝑥 that satisfy 𝜓 is a subclass the intersection of all 𝑦 that satisfy 𝜒. (Contributed by RP, 17-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑦) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ 𝜓} ⊆ ∩ {𝑦 ∣ 𝜒}) | ||
Theorem | eu0 41134* | There is only one empty set. (Contributed by RP, 1-Oct-2023.) |
⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
Theorem | epelon2 41135 | Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴 ∈ 𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7634. This is a weak form of epelg 5497 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | ontric3g 41136* | For all 𝑥, 𝑦 ∈ On, one and only one of the following hold: 𝑥 ∈ 𝑦, 𝑦 = 𝑥, or 𝑦 ∈ 𝑥. This is a transparent strict trichotomy. (Contributed by RP, 27-Sep-2023.) |
⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 ∈ 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥))) | ||
Theorem | dfsucon 41137* | 𝐴 is called a successor ordinal if it is not a limit ordinal and not the empty set. (Contributed by RP, 11-Nov-2023.) |
⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
Theorem | snen1g 41138 | A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) | ||
Theorem | snen1el 41139 | A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ {𝐴}) | ||
Theorem | sn1dom 41140 | A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.) |
⊢ {𝐴} ≼ 1o | ||
Theorem | pr2dom 41141 | An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
⊢ {𝐴, 𝐵} ≼ 2o | ||
Theorem | tr3dom 41142 | An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
⊢ {𝐴, 𝐵, 𝐶} ≼ 3o | ||
Theorem | ensucne0 41143 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.) |
⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
Theorem | ensucne0OLD 41144 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
Theorem | dfom6 41145 | Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.) |
⊢ ω = ∪ (On ∩ Fin) | ||
Theorem | infordmin 41146 | ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 | ||
Theorem | iscard4 41147 | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | ||
Theorem | minregex 41148* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.) |
⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
Theorem | minregex2 41149* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
Theorem | iscard5 41150* | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
Theorem | elrncard 41151* | Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥 ∈ 𝐴. (Contributed by RP, 1-Oct-2023.) |
⊢ (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
Theorem | harval3 41152* | (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | harval3on 41153* | For any ordinal number 𝐴 let (har‘𝐴) denote the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
⊢ (𝐴 ∈ On → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | omssrncard 41154 | All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
⊢ ω ⊆ ran card | ||
Theorem | 0iscard 41155 | 0 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ ∅ ∈ ran card | ||
Theorem | 1iscard 41156 | 1 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ 1o ∈ ran card | ||
Theorem | omiscard 41157 | ω is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ ω ∈ ran card | ||
Theorem | sucomisnotcard 41158 | ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ ¬ (ω +o 1o) ∈ ran card | ||
Theorem | nna1iscard 41159 | For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ (𝑁 ∈ ω → (𝑁 +o 1o) ∈ ran card) | ||
Theorem | har2o 41160 | The least cardinal greater than 2 is 3. (Contributed by RP, 5-Nov-2023.) |
⊢ (har‘2o) = 3o | ||
Theorem | en2pr 41161* | A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) | ||
Theorem | pr2cv 41162 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | pr2el1 41163 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ {𝐴, 𝐵}) | ||
Theorem | pr2cv1 41164 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
Theorem | pr2el2 41165 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ {𝐴, 𝐵}) | ||
Theorem | pr2cv2 41166 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
Theorem | pren2 41167 | An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | pr2eldif1 41168 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) | ||
Theorem | pr2eldif2 41169 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) | ||
Theorem | pren2d 41170 | A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
Theorem | aleph1min 41171 | (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} | ||
Theorem | alephiso2 41172 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | ||
Theorem | alephiso3 41173 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) | ||
Theorem | pwelg 41174* | The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | ||
Theorem | pwinfig 41175* | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) | ||
Theorem | pwinfi2 41176 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑈 is a weak universe. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝑈 ∈ WUni → (𝐴 ∈ (𝑈 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑈 ∖ Fin))) | ||
Theorem | pwinfi3 41177 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | ||
Theorem | pwinfi 41178 | The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)) | ||
While there is not yet a definition, the finite intersection property of a class is introduced by fiint 9100 where two textbook definitions are shown to be equivalent. This property is seen often with ordinal numbers (onin 6301, ordelinel 6368), chains of sets ordered by the proper subset relation (sorpssin 7593), various sets in the field of topology (inopn 22057, incld 22203, innei 22285, ... ) and "universal" classes like weak universes (wunin 10478, tskin 10524) and the class of all sets (inex1g 5244). | ||
Theorem | fipjust 41179* | A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | ||
Theorem | cllem0 41180* | The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
⊢ 𝑉 = {𝑧 ∣ 𝜑} & ⊢ 𝑅 ∈ 𝑈 & ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 | ||
Theorem | superficl 41181* | The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | superuncl 41182* | The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssficl 41183* | The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | ssuncl 41184* | The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssdifcl 41185* | The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 | ||
Theorem | sssymdifcl 41186* | The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 | ||
Theorem | fiinfi 41187* | If two classes have the finite intersection property, then so does their intersection. (Contributed by RP, 1-Jan-2020.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | ||
Theorem | rababg 41188 | Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) | ||
Theorem | elintabg 41189* | Two ways of saying a set is an element of the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | elinintab 41190* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | elmapintrab 41191* | Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
⊢ 𝐶 ∈ V & ⊢ 𝐶 ⊆ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) | ||
Theorem | elinintrab 41192* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)))) | ||
Theorem | inintabss 41193* | Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | ||
Theorem | inintabd 41194* | Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | xpinintabd 41195* | Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | relintabex 41196 | If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | ||
Theorem | elcnvcnvintab 41197* | Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | relintab 41198* | Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) | ||
Theorem | nonrel 41199 | A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | ||
Theorem | elnonrel 41200 | Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |