HomeHome Metamath Proof Explorer
Theorem List (p. 412 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44900)
 

Theorem List for Metamath Proof Explorer - 41101-41200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeel0cT 41101 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜑𝜓)       (⊤ → 𝜓)
 
TheoremeelT0 41102 An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(⊤ → 𝜑)    &   𝜓    &   ((𝜑𝜓) → 𝜒)       𝜒
 
Theoreme0bi 41103 Elimination rule identical to mpbi 232. The non-virtual deduction form is the virtual deduction form, which is mpbi 232. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜑𝜓)       𝜓
 
Theoreme0bir 41104 Elimination rule identical to mpbir 233. The non-virtual deduction form is the virtual deduction form, which is mpbir 233. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓𝜑)       𝜓
 
Theoremuun0.1 41105 Convention notation form of un0.1 41106. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(⊤ → 𝜑)    &   (𝜓𝜒)    &   ((⊤ ∧ 𝜓) → 𝜃)       (𝜓𝜃)
 
Theoremun0.1 41106 is the constant true, a tautology (see df-tru 1536). Kleene's "empty conjunction" is logically equivalent to . In a virtual deduction we shall interpret to be the empty wff or the empty collection of virtual hypotheses. in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(      ▶   𝜑   )    &   (   𝜓   ▶   𝜒   )    &   (   (      ,   𝜓   )   ▶   𝜃   )       (   𝜓   ▶   𝜃   )
 
TheoremuunT1 41107 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accommodate a possible future version of df-tru 1536. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ 𝜑) → 𝜓)       (𝜑𝜓)
 
TheoremuunT1p1 41108 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ ⊤) → 𝜓)       (𝜑𝜓)
 
TheoremuunT21 41109 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ (𝜑𝜓)) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremuun121 41110 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ (𝜑𝜓)) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremuun121p1 41111 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ 𝜑) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremuun132 41112 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun132p1 41113 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜓𝜒) ∧ 𝜑) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremanabss7p1 41114 A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the 0th permutation did not exist in set.mm as anabss7 671. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜓𝜑) ∧ 𝜑) → 𝜒)       ((𝜓𝜑) → 𝜒)
 
Theoremun10 41115 A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,      )   ▶   𝜓   )       (   𝜑   ▶   𝜓   )
 
Theoremun01 41116 A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (      ,   𝜑   )   ▶   𝜓   )       (   𝜑   ▶   𝜓   )
 
Theoremun2122 41117 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ 𝜓𝜓) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremuun2131 41118 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun2131p1 41119 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜒) ∧ (𝜑𝜓)) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
TheoremuunTT1 41120 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ ⊤ ∧ 𝜑) → 𝜓)       (𝜑𝜓)
 
TheoremuunTT1p1 41121 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ 𝜑 ∧ ⊤) → 𝜓)       (𝜑𝜓)
 
TheoremuunTT1p2 41122 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓)       (𝜑𝜓)
 
TheoremuunT11 41123 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ 𝜑𝜑) → 𝜓)       (𝜑𝜓)
 
TheoremuunT11p1 41124 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ ⊤ ∧ 𝜑) → 𝜓)       (𝜑𝜓)
 
TheoremuunT11p2 41125 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜑 ∧ ⊤) → 𝜓)       (𝜑𝜓)
 
TheoremuunT12 41126 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ 𝜑𝜓) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
TheoremuunT12p1 41127 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((⊤ ∧ 𝜓𝜑) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
TheoremuunT12p2 41128 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ ⊤ ∧ 𝜓) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
TheoremuunT12p3 41129 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜓 ∧ ⊤ ∧ 𝜑) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
TheoremuunT12p4 41130 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓 ∧ ⊤) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
TheoremuunT12p5 41131 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜓𝜑 ∧ ⊤) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremuun111 41132 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜑𝜑) → 𝜓)       (𝜑𝜓)
 
Theorem3anidm12p1 41133 A deduction unionizing a non-unionized collection of virtual hypotheses. 3anidm12 1415 denotes the deduction which would have been named uun112 if it did not pre-exist in set.mm. This second permutation's name is based on this pre-existing name. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜑) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theorem3anidm12p2 41134 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜓𝜑𝜑) → 𝜒)       ((𝜑𝜓) → 𝜒)
 
Theoremuun123 41135 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜒𝜓) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun123p1 41136 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜓𝜑𝜒) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun123p2 41137 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜒𝜑𝜓) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun123p3 41138 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜓𝜒𝜑) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun123p4 41139 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜒𝜓𝜑) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremuun2221 41140 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜑 ∧ (𝜓𝜑)) → 𝜒)       ((𝜓𝜑) → 𝜒)
 
Theoremuun2221p1 41141 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ∧ (𝜓𝜑) ∧ 𝜑) → 𝜒)       ((𝜓𝜑) → 𝜒)
 
Theoremuun2221p2 41142 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜓𝜑) ∧ 𝜑𝜑) → 𝜒)       ((𝜓𝜑) → 𝜒)
 
Theorem3impdirp1 41143 A deduction unionizing a non-unionized collection of virtual hypotheses. Commuted version of 3impdir 1347. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜒𝜓) ∧ (𝜑𝜓)) → 𝜃)       ((𝜑𝜒𝜓) → 𝜃)
 
Theorem3impcombi 41144 A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017.)
((𝜑𝜓𝜑) → (𝜒𝜃))       ((𝜓𝜑𝜒) → 𝜃)
 
20.36.6  Theorems proved using Virtual Deduction
 
TheoremtrsspwALT 41145 Virtual deduction proof of the left-to-right implication of dftr4 5169. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 5169 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
 
TheoremtrsspwALT2 41146 Virtual deduction proof of trsspwALT 41145. This proof is the same as the proof of trsspwALT 41145 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
 
TheoremtrsspwALT3 41147 Short predicate calculus proof of the left-to-right implication of dftr4 5169. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 41146, which is the virtual deduction proof trsspwALT 41145 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
 
Theoremsspwtr 41148 Virtual deduction proof of the right-to-left implication of dftr4 5169. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 41148 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
 
TheoremsspwtrALT 41149 Virtual deduction proof of sspwtr 41148. This proof is the same as the proof of sspwtr 41148 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
 
TheoremsspwtrALT2 41150 Short predicate calculus proof of the right-to-left implication of dftr4 5169. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 41149, which is the virtual deduction proof sspwtr 41148 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
 
TheorempwtrVD 41151 Virtual deduction proof of pwtr 5337; see pwtrrVD 41152 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr 𝒫 𝐴)
 
TheorempwtrrVD 41152 Virtual deduction proof of pwtr 5337; see pwtrVD 41151 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       (Tr 𝒫 𝐴 → Tr 𝐴)
 
TheoremsuctrALT 41153 The successor of a transitive class is transitive. The proof of https://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT 41153 using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/suctrro.html 41153 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr 6268 for the original proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare, 12-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsnssiALTVD 41154 Virtual deduction proof of snssiALT 41155. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → {𝐴} ⊆ 𝐵)
 
TheoremsnssiALT 41155 If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4734. This theorem was automatically generated from snssiALTVD 41154 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → {𝐴} ⊆ 𝐵)
 
TheoremsnsslVD 41156 Virtual deduction proof of snssl 41157. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       ({𝐴} ⊆ 𝐵𝐴𝐵)
 
Theoremsnssl 41157 If a singleton is a subclass of another class, then the singleton's element is an element of that other class. This theorem is the right-to-left implication of the biconditional snss 4711. The proof of this theorem was automatically generated from snsslVD 41156 using a tools command file, translateMWO.cmd, by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       ({𝐴} ⊆ 𝐵𝐴𝐵)
 
TheoremsnelpwrVD 41158 Virtual deduction proof of snelpwi 5328. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
 
TheoremunipwrVD 41159 Virtual deduction proof of unipwr 41160. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 𝒫 𝐴
 
Theoremunipwr 41160 A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 5334. The proof of this theorem was automatically generated from unipwrVD 41159 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 𝒫 𝐴
 
TheoremsstrALT2VD 41161 Virtual deduction proof of sstrALT2 41162. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
TheoremsstrALT2 41162 Virtual deduction proof of sstr 3974, transitivity of subclasses, Theorem 6 of [Suppes] p. 23. This theorem was automatically generated from sstrALT2VD 41161 using the command file translate_without_overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
TheoremsuctrALT2VD 41163 Virtual deduction proof of suctrALT2 41164. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsuctrALT2 41164 Virtual deduction proof of suctr 6268. The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD 41163 using the tools command file translate_without_overwriting_minimize_excluding_duplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
Theoremelex2VD 41165* Virtual deduction proof of elex2 3516. (Contributed by Alan Sare, 25-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ∃𝑥 𝑥𝐵)
 
Theoremelex22VD 41166* Virtual deduction proof of elex22 3517. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐴𝐶) → ∃𝑥(𝑥𝐵𝑥𝐶))
 
Theoremeqsbc3rVD 41167* Virtual deduction proof of eqsbc3r 3836. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥𝐶 = 𝐴))
 
Theoremzfregs2VD 41168* Virtual deduction proof of zfregs2 9169. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
 
Theoremtpid3gVD 41169 Virtual deduction proof of tpid3g 4701. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
 
Theoremen3lplem1VD 41170* Virtual deduction proof of en3lplem1 9069. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
 
Theoremen3lplem2VD 41171* Virtual deduction proof of en3lplem2 9070. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
 
Theoremen3lpVD 41172 Virtual deduction proof of en3lp 9071. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
 
20.36.7  Theorems proved using Virtual Deduction with mmj2 assistance
 
Theoremsimplbi2VD 41173 Virtual deduction proof of simplbi2 503. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: (𝜑 ↔ (𝜓𝜒))
3:1,?: e0a 41099 ((𝜓𝜒) → 𝜑)
qed:3,?: e0a 41099 (𝜓 → (𝜒𝜑))
The proof of simplbi2 503 was automatically derived from it. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜒𝜑))
 
Theorem3ornot23VD 41174 Virtual deduction proof of 3ornot23 40836. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::
(   𝜑 ∧ ¬ 𝜓)   ▶   𝜑 ∧ ¬ 𝜓)   )
2:: (   𝜑 ∧ ¬ 𝜓)   ,   (𝜒𝜑 𝜓)   ▶   (𝜒𝜑𝜓)   )
3:1,?: e1a 40954 (   𝜑 ∧ ¬ 𝜓)   ▶   ¬ 𝜑   )
4:1,?: e1a 40954 (   𝜑 ∧ ¬ 𝜓)   ▶   ¬ 𝜓   )
5:3,4,?: e11 41015 (   𝜑 ∧ ¬ 𝜓)   ▶   ¬ (𝜑 𝜓)   )
6:2,?: e2 40958 (   𝜑 ∧ ¬ 𝜓)   ,   (𝜒𝜑 𝜓)   ▶   (𝜒 ∨ (𝜑𝜓))   )
7:5,6,?: e12 41051 (   𝜑 ∧ ¬ 𝜓)   ,   (𝜒𝜑 𝜓)   ▶   𝜒   )
8:7: (   𝜑 ∧ ¬ 𝜓)   ▶   ((𝜒 𝜑𝜓) → 𝜒)   )
qed:8: ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 𝜑𝜓) → 𝜒))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒𝜑𝜓) → 𝜒))
 
Theoremorbi1rVD 41175 Virtual deduction proof of orbi1r 40837. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜒𝜑)   )
3:2,?: e2 40958 (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜑𝜒)   )
4:1,3,?: e12 41051 (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜓𝜒)   )
5:4,?: e2 40958 (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜒𝜓)   )
6:5: (   (𝜑𝜓)   ▶   ((𝜒𝜑) → (𝜒𝜓))   )
7:: (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜒𝜓)   )
8:7,?: e2 40958 (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜓𝜒)   )
9:1,8,?: e12 41051 (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜑𝜒)   )
10:9,?: e2 40958 (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜒𝜑)   )
11:10: (   (𝜑𝜓)   ▶   ((𝜒𝜓) → (𝜒𝜑))   )
12:6,11,?: e11 41015 (   (𝜑𝜓)   ▶   ((𝜒 𝜑) ↔ (𝜒𝜓))   )
qed:12: ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theorembitr3VD 41176 Virtual deduction proof of bitr3 355. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑𝜓)   ▶   (𝜑 𝜓)   )
2:1,?: e1a 40954 (   (𝜑𝜓)   ▶   (𝜓 𝜑)   )
3:: (   (𝜑𝜓)   ,   (𝜑𝜒)    ▶   (𝜑𝜒)   )
4:3,?: e2 40958 (   (𝜑𝜓)   ,   (𝜑𝜒)    ▶   (𝜒𝜑)   )
5:2,4,?: e12 41051 (   (𝜑𝜓)   ,   (𝜑𝜒)    ▶   (𝜓𝜒)   )
6:5: (   (𝜑𝜓)   ▶   ((𝜑 𝜒) → (𝜓𝜒))   )
qed:6: ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
 
Theorem3orbi123VD 41177 Virtual deduction proof of 3orbi123 40838. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   )
2:1,?: e1a 40954 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (𝜑𝜓)   )
3:1,?: e1a 40954 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (𝜒𝜃)   )
4:1,?: e1a 40954 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (𝜏𝜂)   )
5:2,3,?: e11 41015 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜒) ↔ (𝜓𝜃))   )
6:5,4,?: e11 41015 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (((𝜑𝜒) ∨ 𝜏) ↔ ((𝜓𝜃) 𝜂))   )
7:?: (((𝜑𝜒) ∨ 𝜏) ↔ (𝜑 𝜒𝜏))
8:6,7,?: e10 41021 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜒𝜏) ↔ ((𝜓𝜃) 𝜂))   )
9:?: (((𝜓𝜃) ∨ 𝜂) ↔ (𝜓𝜃𝜂))
10:8,9,?: e10 41021 (   ((𝜑𝜓) ∧ (𝜒 𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜒𝜏) ↔ (𝜓 𝜃𝜂))   )
qed:10: (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃 𝜂)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂)))
 
Theoremsbc3orgVD 41178 Virtual deduction proof of the analogue of sbcor 3821 with three disjuncts. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 40954 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) [𝐴 / 𝑥]𝜒))   )
3:: (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 𝜓𝜒))
32:3: 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
33:1,32,?: e10 41021 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑 𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
4:1,33,?: e11 41015 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
5:2,4,?: e11 41015 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
6:1,?: e1a 40954 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
7:6,?: e1a 40954 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
8:5,7,?: e11 41015 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
9:?: ((([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
10:8,9,?: e10 41021 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
qed:10: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
 
Theorem19.21a3con13vVD 41179* Virtual deduction proof of alrim3con13v 40860. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑 → ∀𝑥𝜑)    ▶   (𝜑 → ∀𝑥𝜑)   )
2:: (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓𝜑 𝜒)   ▶   (𝜓𝜑𝜒)   )
3:2,?: e2 40958 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝜓   )
4:2,?: e2 40958 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝜑   )
5:2,?: e2 40958 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝜒   )
6:1,4,?: e12 41051 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥𝜑   )
7:3,?: e2 40958 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥𝜓   )
8:5,?: e2 40958 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥𝜒   )
9:7,6,8,?: e222 40963 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒)   )
10:9,?: e2 40958 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥(𝜓𝜑𝜒)   )
11:10:in2 (   (𝜑 → ∀𝑥𝜑)   ▶   ((𝜓 𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒))   )
qed:11:in1 ((𝜑 → ∀𝑥𝜑) → ((𝜓 𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → ∀𝑥𝜑) → ((𝜓𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒)))
 
TheoremexbirVD 41180 Virtual deduction proof of exbir 40805. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓) → (𝜒𝜃))    ▶   ((𝜑𝜓) → (𝜒𝜃))   )
2:: (   ((𝜑𝜓) → (𝜒𝜃))   ,    (𝜑𝜓)   ▶   (𝜑𝜓)   )
3:: (   ((𝜑𝜓) → (𝜒𝜃))   ,    (𝜑𝜓), 𝜃   ▶   𝜃   )
5:1,2,?: e12 41051 (   ((𝜑𝜓) → (𝜒 𝜃)), (𝜑𝜓)   ▶   (𝜒𝜃)   )
6:3,5,?: e32 41085 (   ((𝜑𝜓) → (𝜒 𝜃)), (𝜑𝜓), 𝜃   ▶   𝜒   )
7:6: (   ((𝜑𝜓) → (𝜒 𝜃)), (𝜑𝜓)   ▶   (𝜃𝜒)   )
8:7: (   ((𝜑𝜓) → (𝜒𝜃))    ▶   ((𝜑𝜓) → (𝜃𝜒))   )
9:8,?: e1a 40954 (   ((𝜑𝜓) → (𝜒 𝜃))   ▶   (𝜑 → (𝜓 → (𝜃𝜒)))   )
qed:9: (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
(Contributed by Alan Sare, 13-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
 
TheoremexbiriVD 41181 Virtual deduction proof of exbiri 809. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓) → (𝜒𝜃))
2:: (   𝜑   ▶   𝜑   )
3:: (   𝜑   ,   𝜓   ▶   𝜓   )
4:: (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
5:2,1,?: e10 41021 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
6:3,5,?: e21 41057 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
7:4,6,?: e32 41085 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
8:7: (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
9:8: (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
qed:9: (𝜑 → (𝜓 → (𝜃𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theoremrspsbc2VD 41182* Virtual deduction proof of rspsbc2 40861. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝐶𝐷   ▶   𝐶𝐷   )
3:: (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐵𝑦𝐷𝜑   )
4:1,3,?: e13 41075 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   [𝐴 / 𝑥]𝑦𝐷𝜑   )
5:1,4,?: e13 41075 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑦𝐷[𝐴 / 𝑥]𝜑   )
6:2,5,?: e23 41082 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   [𝐶 / 𝑦][𝐴 / 𝑥]𝜑   )
7:6: (   𝐴𝐵   ,   𝐶𝐷   ▶   (∀𝑥𝐵 𝑦𝐷𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)   )
8:7: (   𝐴𝐵   ▶   (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑))   )
qed:8: (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
 
Theorem3impexpVD 41183 Virtual deduction proof of 3impexp 1354. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓𝜒) 𝜃)   ▶   ((𝜑𝜓𝜒) → 𝜃)   )
2:: ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
3:1,2,?: e10 41021 (   ((𝜑𝜓𝜒) 𝜃)   ▶   (((𝜑𝜓) ∧ 𝜒) → 𝜃)   )
4:3,?: e1a 40954 (   ((𝜑𝜓𝜒) 𝜃)   ▶   ((𝜑𝜓) → (𝜒𝜃))   )
5:4,?: e1a 40954 (   ((𝜑𝜓𝜒) 𝜃)   ▶   (𝜑 → (𝜓 → (𝜒𝜃)))   )
6:5: (((𝜑𝜓𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒𝜃))))
7:: (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   (𝜑 → (𝜓 → (𝜒𝜃)))   )
8:7,?: e1a 40954 (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   ((𝜑𝜓) → (𝜒𝜃))   )
9:8,?: e1a 40954 (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   (((𝜑𝜓) ∧ 𝜒) → 𝜃)   )
10:2,9,?: e01 41018 (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   ((𝜑𝜓𝜒) → 𝜃)   )
11:10: ((𝜑 → (𝜓 → (𝜒 𝜃))) → ((𝜑𝜓𝜒) → 𝜃))
qed:6,11,?: e00 41095 (((𝜑𝜓𝜒) 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
 
Theorem3impexpbicomVD 41184 Virtual deduction proof of 3impexpbicom 40806. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓𝜒) → (𝜃𝜏))   ▶   ((𝜑𝜓𝜒) → (𝜃𝜏))   )
2:: ((𝜃𝜏) ↔ (𝜏 𝜃))
3:1,2,?: e10 41021 (   ((𝜑𝜓𝜒) → (𝜃𝜏))   ▶   ((𝜑𝜓𝜒) → (𝜏𝜃))   )
4:3,?: e1a 40954 (   ((𝜑𝜓𝜒) → (𝜃𝜏))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃))))   )
5:4: (((𝜑𝜓𝜒) → (𝜃𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃)))))
6:: (   (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃))))   )
7:6,?: e1a 40954 (   (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))   ▶   ((𝜑𝜓𝜒) → (𝜏 𝜃))   )
8:7,2,?: e10 41021 (   (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))   ▶   ((𝜑𝜓𝜒) → (𝜃 𝜏))   )
9:8: ((𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))) → ((𝜑𝜓𝜒) → (𝜃 𝜏)))
qed:5,9,?: e00 41095 (((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃)))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
 
Theorem3impexpbicomiVD 41185 Virtual deduction proof of 3impexpbicomi 40807. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓𝜒) → (𝜃 𝜏))
qed:1,?: e0a 41099 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
 
TheoremsbcoreleleqVD 41186* Virtual deduction proof of sbcoreleleq 40862. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 40954 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 𝑦𝑥𝐴)   )
3:1,?: e1a 40954 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑦 𝑥𝐴𝑥)   )
4:1,?: e1a 40954 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴)   )
5:2,3,4,?: e111 41001 (   𝐴𝐵   ▶   ((𝑥𝐴 𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥 [𝐴 / 𝑦]𝑥 = 𝑦))   )
6:1,?: e1a 40954 (   𝐴𝐵    ▶   ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))   )
7:5,6: e11 41015 (   𝐴𝐵   ▶   ([𝐴 / 𝑦](𝑥 𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴))   )
qed:7: (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦 𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
 
Theoremhbra2VD 41187* Virtual deduction proof of nfra2 3228. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (∀𝑦𝐵𝑥𝐴𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
2:: (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝐵𝑥𝐴𝜑)
3:1,2,?: e00 41095 (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
4:2: 𝑦(∀𝑥𝐴𝑦𝐵𝜑 𝑦𝐵𝑥𝐴𝜑)
5:4,?: e0a 41099 (∀𝑦𝑥𝐴𝑦𝐵𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
qed:3,5,?: e00 41095 (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝑥𝐴𝑦𝐵𝜑)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)
 
TheoremtratrbVD 41188* Virtual deduction proof of tratrb 40863. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) 𝐵𝐴)   )
2:1,?: e1a 40954 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐴   )
3:1,?: e1a 40954 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
4:1,?: e1a 40954 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝐵𝐴   )
5:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝑦𝑦𝐵)   )
6:5,?: e2 40958 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝑦   )
7:5,?: e2 40958 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐵   )
8:2,7,4,?: e121 40983 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐴   )
9:2,6,8,?: e122 40980 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐴   )
10:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   𝐵𝑥   )
11:6,7,10,?: e223 40962 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   (𝑥𝑦𝑦𝐵𝐵𝑥)   )
12:11: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))   )
13:: ¬ (𝑥𝑦𝑦𝐵 𝐵𝑥)
14:12,13,?: e20 41054 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝐵𝑥   )
15:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑥 = 𝐵   )
16:7,15,?: e23 41082 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑦𝑥   )
17:6,16,?: e23 41082 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   (𝑥𝑦𝑦𝑥)   )
18:17: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))   )
19:: ¬ (𝑥𝑦𝑦𝑥)
20:18,19,?: e20 41054 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝑥 = 𝐵   )
21:3,?: e1a 40954 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦𝐴 𝑥𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
22:21,9,4,?: e121 40983 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥 𝑥 = 𝑦)   )
23:22,?: e2 40958 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
24:4,23,?: e12 41051 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝐵𝐵𝑥𝑥 = 𝐵)   )
25:14,20,24,?: e222 40963 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐵   )
26:25: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   ((𝑥𝑦 𝑦𝐵) → 𝑥𝐵)   )
27:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
28:27,?: e0a 41099 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦) ∧ 𝐵𝐴))
29:28,26: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
30:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
31:30,?: e0a 41099 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
32:31,29: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥 𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
33:32,?: e1a 40954 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐵   )
qed:33: ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
 
Theoremal2imVD 41189 Virtual deduction proof of al2im 1811. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝑥(𝜑 → (𝜓𝜒))    ▶   𝑥(𝜑 → (𝜓𝜒))   )
2:1,?: e1a 40954 (   𝑥(𝜑 → (𝜓𝜒))    ▶   (∀𝑥𝜑 → ∀𝑥(𝜓𝜒))   )
3:: (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
4:2,3,?: e10 41021 (   𝑥(𝜑 → (𝜓𝜒))    ▶   (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))   )
qed:4: (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremsyl5impVD 41190 Virtual deduction proof of syl5imp 40839. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑 → (𝜓𝜒))   ▶   (𝜑 → (𝜓𝜒))   )
2:1,?: e1a 40954 (   (𝜑 → (𝜓𝜒))   ▶   (𝜓 → (𝜑𝜒))   )
3:: (   (𝜑 → (𝜓𝜒))   ,   (𝜃 𝜓)   ▶   (𝜃𝜓)   )
4:3,2,?: e21 41057 (   (𝜑 → (𝜓𝜒))   ,   (𝜃 𝜓)   ▶   (𝜃 → (𝜑𝜒))   )
5:4,?: e2 40958 (   (𝜑 → (𝜓𝜒))   ,   (𝜃 𝜓)   ▶   (𝜑 → (𝜃𝜒))   )
6:5: (   (𝜑 → (𝜓𝜒))   ▶   ((𝜃 𝜓) → (𝜑 → (𝜃𝜒)))   )
qed:6: ((𝜑 → (𝜓𝜒)) → ((𝜃 𝜓) → (𝜑 → (𝜃𝜒))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜃𝜓) → (𝜑 → (𝜃𝜒))))
 
TheoremidiVD 41191 Virtual deduction proof of idiALT 40804. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: 𝜑
qed:1,?: e0a 41099 𝜑
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       𝜑
 
TheoremancomstVD 41192 Closed form of ancoms 461. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: ((𝜑𝜓) ↔ (𝜓𝜑))
qed:1,?: e0a 41099 (((𝜑𝜓) → 𝜒) ↔ ((𝜓 𝜑) → 𝜒))
The proof of ancomst 467 is derived automatically from it. (Contributed by Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))
 
Theoremssralv2VD 41193* Quantification restricted to a subclass for two quantifiers. ssralv 4032 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 40858 is ssralv2VD 41193 without virtual deductions and was automatically derived from ssralv2VD 41193.
1:: (   (𝐴𝐵𝐶𝐷)   ▶   (𝐴𝐵 𝐶𝐷)   )
2:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐵𝑦𝐷𝜑   )
3:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐴𝐵   )
4:3,2: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐷𝜑   )
5:4: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐷𝜑)   )
6:5: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐷𝜑)   )
7:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑥𝐴   )
8:7,6: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐷𝜑   )
9:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐶𝐷   )
10:9,8: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐶𝜑   )
11:10: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐶𝜑)   )
12:: ((𝐴𝐵𝐶𝐷) → ∀𝑥(𝐴𝐵𝐶𝐷))
13:: (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝑥𝐵𝑦𝐷𝜑)
14:12,13,11: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐶𝜑)   )
15:14: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐶𝜑   )
16:15: (   (𝐴𝐵𝐶𝐷)    ▶   (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑)   )
qed:16: ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑))
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
 
TheoremordelordALTVD 41194 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6207 using the Axiom of Regularity indirectly through dford2 9077. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 40864 is ordelordALTVD 41194 without virtual deductions and was automatically derived from ordelordALTVD 41194 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command.
1:: (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴 𝐵𝐴)   )
2:1: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
3:1: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
4:2: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
5:2: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
6:4,3: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
7:6,6,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵 𝑦𝐵(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
8:: ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
9:8: 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
10:9: 𝑦𝐴((𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11:10: (∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
12:11: 𝑥(∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13:12: 𝑥𝐴(∀𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
14:13: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦))
15:14,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
16:4,15,3: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
17:16,7: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
qed:17: ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)
 
TheoremequncomVD 41195 If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 4129 is equncomVD 41195 without virtual deductions and was automatically derived from equncomVD 41195.
1:: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐵𝐶)   )
2:: (𝐵𝐶) = (𝐶𝐵)
3:1,2: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐶𝐵)   )
4:3: (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
5:: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐶𝐵)   )
6:5,2: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐵𝐶)   )
7:6: (𝐴 = (𝐶𝐵) → 𝐴 = (𝐵𝐶))
8:4,7: (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
 
TheoremequncomiVD 41196 Inference form of equncom 4129. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncomi 4130 is equncomiVD 41196 without virtual deductions and was automatically derived from equncomiVD 41196.
h1:: 𝐴 = (𝐵𝐶)
qed:1: 𝐴 = (𝐶𝐵)
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = (𝐵𝐶)       𝐴 = (𝐶𝐵)
 
TheoremsucidALTVD 41197 A set belongs to its successor. Alternate proof of sucid 6264. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 41198 is sucidALTVD 41197 without virtual deductions and was automatically derived from sucidALTVD 41197. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 6191, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction Ord 𝐴 infers 𝑥𝐴𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥) is a semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥))), which unifies with the set.mm reference definition (axiom) dford2 9077.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ ({𝐴} ∪ 𝐴)
4:: suc 𝐴 = ({𝐴} ∪ 𝐴)
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
TheoremsucidALT 41198 A set belongs to its successor. This proof was automatically derived from sucidALTVD 41197 using translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
TheoremsucidVD 41199 A set belongs to its successor. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucid 6264 is sucidVD 41199 without virtual deductions and was automatically derived from sucidVD 41199.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ (𝐴 ∪ {𝐴})
4:: suc 𝐴 = (𝐴 ∪ {𝐴})
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
Theoremimbi12VD 41200 Implication form of imbi12i 353. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi12 349 is imbi12VD 41200 without virtual deductions and was automatically derived from imbi12VD 41200.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜑 𝜒)   ▶   (𝜑𝜒)   )
4:1,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜑 𝜒)   ▶   (𝜓𝜒)   )
5:2,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜑 𝜒)   ▶   (𝜓𝜃)   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜑𝜒) → (𝜓𝜃))   )
7:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜓 𝜃)   ▶   (𝜓𝜃)   )
8:1,7: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜓 𝜃)   ▶   (𝜑𝜃)   )
9:2,8: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜓 𝜃)   ▶   (𝜑𝜒)   )
10:9: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜓𝜃) → (𝜑𝜒))   )
11:6,10: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜑𝜒) ↔ (𝜓𝜃))   )
12:11: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃)))   )
qed:12: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900
  Copyright terms: Public domain < Previous  Next >