Home | Metamath
Proof Explorer Theorem List (p. 412 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29288) |
Hilbert Space Explorer
(29289-30811) |
Users' Mathboxes
(30812-46499) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ifpimimb 41101 | Factor conditional logic operator over implication in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpororb 41102 | Factor conditional logic operator over disjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ∨ 𝜒), (𝜃 ∨ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∨ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpananb 41103 | Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ∧ 𝜒), (𝜃 ∧ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpnannanb 41104 | Factor conditional logic operator over nand in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ⊼ 𝜒), (𝜃 ⊼ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊼ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpor123g 41105 | Disjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
⊢ ((if-(𝜑, 𝜒, 𝜏) ∨ if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒 ∨ 𝜃)) ∧ ((𝜓 → 𝜑) ∨ (𝜏 ∨ 𝜃))) ∧ (((𝜑 → 𝜓) ∨ (𝜒 ∨ 𝜂)) ∧ ((¬ 𝜓 → 𝜑) ∨ (𝜏 ∨ 𝜂))))) | ||
Theorem | ifpimim 41106 | Consequnce of implication. (Contributed by RP, 17-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpbibib 41107 | Factor conditional logic operator over biconditional in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | ifpxorxorb 41108 | Factor conditional logic operator over xor in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
⊢ (if-(𝜑, (𝜓 ⊻ 𝜒), (𝜃 ⊻ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | rp-fakeimass 41109 | A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
⊢ ((𝜑 ∨ 𝜒) ↔ (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) | ||
Theorem | rp-fakeanorass 41110 | A special case where a mixture of and and or appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.) |
⊢ ((𝜒 → 𝜑) ↔ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ (𝜑 ∧ (𝜓 ∨ 𝜒)))) | ||
Theorem | rp-fakeoranass 41111 | A special case where a mixture of or and and appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
⊢ ((𝜑 → 𝜒) ↔ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∨ (𝜓 ∧ 𝜒)))) | ||
Theorem | rp-fakeinunass 41112 | A special case where a mixture of intersection and union appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.) |
⊢ (𝐶 ⊆ 𝐴 ↔ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐴 ∩ (𝐵 ∪ 𝐶))) | ||
Theorem | rp-fakeuninass 41113 | A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) | ||
Membership in the class of finite sets can be expressed in many ways. | ||
Theorem | rp-isfinite5 41114* | A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.) |
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) | ||
Theorem | rp-isfinite6 41115* | A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.) |
⊢ (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)) | ||
Theorem | intabssd 41116* | When for each element 𝑦 there is a subset 𝐴 which may substituted for 𝑥 such that 𝑦 satisfying 𝜒 implies 𝑥 satisfies 𝜓 then the intersection of all 𝑥 that satisfy 𝜓 is a subclass the intersection of all 𝑦 that satisfy 𝜒. (Contributed by RP, 17-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑦) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ 𝜓} ⊆ ∩ {𝑦 ∣ 𝜒}) | ||
Theorem | eu0 41117* | There is only one empty set. (Contributed by RP, 1-Oct-2023.) |
⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
Theorem | epelon2 41118 | Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴 ∈ 𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7615. This is a weak form of epelg 5491 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | ontric3g 41119* | For all 𝑥, 𝑦 ∈ On, one and only one of the following hold: 𝑥 ∈ 𝑦, 𝑦 = 𝑥, or 𝑦 ∈ 𝑥. This is a transparent strict trichotomy. (Contributed by RP, 27-Sep-2023.) |
⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 ∈ 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥))) | ||
Theorem | dfsucon 41120* | 𝐴 is called a successor ordinal if it is not a limit ordinal and not the empty set. (Contributed by RP, 11-Nov-2023.) |
⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
Theorem | snen1g 41121 | A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) | ||
Theorem | snen1el 41122 | A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ {𝐴}) | ||
Theorem | sn1dom 41123 | A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.) |
⊢ {𝐴} ≼ 1o | ||
Theorem | pr2dom 41124 | An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
⊢ {𝐴, 𝐵} ≼ 2o | ||
Theorem | tr3dom 41125 | An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
⊢ {𝐴, 𝐵, 𝐶} ≼ 3o | ||
Theorem | ensucne0 41126 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.) |
⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
Theorem | ensucne0OLD 41127 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
Theorem | dfom6 41128 | Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.) |
⊢ ω = ∪ (On ∩ Fin) | ||
Theorem | infordmin 41129 | ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 | ||
Theorem | iscard4 41130 | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | ||
Theorem | iscard5 41131* | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
Theorem | elrncard 41132* | Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥 ∈ 𝐴. (Contributed by RP, 1-Oct-2023.) |
⊢ (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
Theorem | harval3 41133* | (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | harval3on 41134* | For any ordinal number 𝐴 let (har‘𝐴) denote the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
⊢ (𝐴 ∈ On → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | en2pr 41135* | A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) | ||
Theorem | pr2cv 41136 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | pr2el1 41137 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ {𝐴, 𝐵}) | ||
Theorem | pr2cv1 41138 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
Theorem | pr2el2 41139 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ {𝐴, 𝐵}) | ||
Theorem | pr2cv2 41140 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
Theorem | pren2 41141 | An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | pr2eldif1 41142 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) | ||
Theorem | pr2eldif2 41143 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) | ||
Theorem | pren2d 41144 | A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
Theorem | aleph1min 41145 | (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} | ||
Theorem | alephiso2 41146 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | ||
Theorem | alephiso3 41147 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) | ||
Theorem | pwelg 41148* | The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | ||
Theorem | pwinfig 41149* | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) | ||
Theorem | pwinfi2 41150 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑈 is a weak universe. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝑈 ∈ WUni → (𝐴 ∈ (𝑈 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑈 ∖ Fin))) | ||
Theorem | pwinfi3 41151 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | ||
Theorem | pwinfi 41152 | The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)) | ||
While there is not yet a definition, the finite intersection property of a class is introduced by fiint 9078 where two textbook definitions are shown to be equivalent. This property is seen often with ordinal numbers (onin 6290, ordelinel 6357), chains of sets ordered by the proper subset relation (sorpssin 7574), various sets in the field of topology (inopn 22058, incld 22204, innei 22286, ... ) and "universal" classes like weak universes (wunin 10479, tskin 10525) and the class of all sets (inex1g 5241). | ||
Theorem | fipjust 41153* | A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | ||
Theorem | cllem0 41154* | The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
⊢ 𝑉 = {𝑧 ∣ 𝜑} & ⊢ 𝑅 ∈ 𝑈 & ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 | ||
Theorem | superficl 41155* | The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | superuncl 41156* | The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssficl 41157* | The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | ssuncl 41158* | The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssdifcl 41159* | The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 | ||
Theorem | sssymdifcl 41160* | The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 | ||
Theorem | fiinfi 41161* | If two classes have the finite intersection property, then so does their intersection. (Contributed by RP, 1-Jan-2020.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | ||
Theorem | rababg 41162 | Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) | ||
Theorem | elintabg 41163* | Two ways of saying a set is an element of the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | elinintab 41164* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | elmapintrab 41165* | Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
⊢ 𝐶 ∈ V & ⊢ 𝐶 ⊆ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) | ||
Theorem | elinintrab 41166* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)))) | ||
Theorem | inintabss 41167* | Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | ||
Theorem | inintabd 41168* | Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | xpinintabd 41169* | Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | relintabex 41170 | If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | ||
Theorem | elcnvcnvintab 41171* | Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | relintab 41172* | Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) | ||
Theorem | nonrel 41173 | A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | ||
Theorem | elnonrel 41174 | Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) | ||
Theorem | cnvssb 41175 | Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) | ||
Theorem | relnonrel 41176 | The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | ||
Theorem | cnvnonrel 41177 | The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | brnonrel 41178 | A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) | ||
Theorem | dmnonrel 41179 | The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ dom (𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | rnnonrel 41180 | The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | resnonrel 41181 | A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ | ||
Theorem | imanonrel 41182 | An image under the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) “ 𝐵) = ∅ | ||
Theorem | cononrel1 41183 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ | ||
Theorem | cononrel2 41184 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ | ||
See also idssxp 5949 by Thierry Arnoux. | ||
Theorem | elmapintab 41185* | Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) & ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) | ||
Theorem | fvnonrel 41186 | The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ | ||
Theorem | elinlem 41187 | Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) | ||
Theorem | elcnvcnvlem 41188 | Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | ||
Original probably needs new subsection for Relation-related existence theorems. | ||
Theorem | cnvcnvintabd 41189* | Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜓)}) | ||
Theorem | elcnvlem 41190 | Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) ⇒ ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) | ||
Theorem | elcnvintab 41191* | Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) | ||
Theorem | cnvintabd 41192* | Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) | ||
Theorem | undmrnresiss 41193* | Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 41194. (Contributed by RP, 26-Sep-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | ||
Theorem | reflexg 41194* | Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | ||
Theorem | cnvssco 41195* | A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | ||
Theorem | refimssco 41196 | Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) | ||
Theorem | cleq2lem 41197 | Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) | ||
Theorem | cbvcllem 41198* | Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} | ||
Theorem | clublem 41199* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
Theorem | clss2lem 41200* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |