Home | Metamath
Proof Explorer Theorem List (p. 412 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | undmrnresiss 41101* | Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 41102. (Contributed by RP, 26-Sep-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | ||
Theorem | reflexg 41102* | Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | ||
Theorem | cnvssco 41103* | A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | ||
Theorem | refimssco 41104 | Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) | ||
Theorem | cleq2lem 41105 | Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) | ||
Theorem | cbvcllem 41106* | Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} | ||
Theorem | clublem 41107* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
Theorem | clss2lem 41108* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | ||
Theorem | dfid7 41109* | Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) | ||
Theorem | mptrcllem 41110* | Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → 𝜒) & ⊢ (𝑥 ∈ 𝑉 → 𝜃) & ⊢ (𝑥 ∈ 𝑉 → 𝜏) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) & ⊢ (𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) | ||
Theorem | cotrintab 41111 | The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.) |
⊢ (𝜑 → (𝑥 ∘ 𝑥) ⊆ 𝑥) ⇒ ⊢ (∩ {𝑥 ∣ 𝜑} ∘ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑥 ∣ 𝜑} | ||
Theorem | rclexi 41112* | The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V | ||
Theorem | rtrclexlem 41113 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | ||
Theorem | rtrclex 41114* | The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝐴 ∈ V ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) | ||
Theorem | trclubgNEW 41115* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
Theorem | trclubNEW 41116* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
Theorem | trclexi 41117* | The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V | ||
Theorem | rtrclexi 41118* | The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V | ||
Theorem | clrellem 41119* | When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝜑 → Rel 𝑋) & ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | ||
Theorem | clcnvlem 41120* | When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) & ⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) | ||
Theorem | cnvtrucl0 41121* | The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) | ||
Theorem | cnvrcl0 41122* | The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) | ||
Theorem | cnvtrcl0 41123* | The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) | ||
Theorem | dmtrcl 41124* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
Theorem | rntrcl 41125* | The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) | ||
Theorem | dfrtrcl5 41126* | Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.) |
⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) | ||
Theorem | trcleq2lemRP 41127 | Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
This is based on the observation that the real and imaginary parts of a complex number can be calculated from the number's absolute and real part and the sign of its imaginary part. Formalization of the formula in sqrtcval 41138 was motivated by a short Michael Penn video. | ||
Theorem | sqrtcvallem1 41128 | Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 41138. (Contributed by RP, 17-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+)) | ||
Theorem | reabsifneg 41129 | Alternate expression for the absolute value of a real number. Lemma for sqrtcval 41138. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) | ||
Theorem | reabsifnpos 41130 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 ≤ 0, -𝐴, 𝐴)) | ||
Theorem | reabsifpos 41131 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 < 𝐴, 𝐴, -𝐴)) | ||
Theorem | reabsifnneg 41132 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 ≤ 𝐴, 𝐴, -𝐴)) | ||
Theorem | reabssgn 41133 | Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024.) |
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) | ||
Theorem | sqrtcvallem2 41134 | Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 41138. See imsqrtval 41141. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) | ||
Theorem | sqrtcvallem3 41135 | Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval 41138, sqrtcval2 41139, resqrtval 41140, and imsqrtval 41141. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
Theorem | sqrtcvallem4 41136 | Equivalent to saying that the square of the real component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 41138. See resqrtval 41140. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)) | ||
Theorem | sqrtcvallem5 41137 | Equivalent to saying that the real component of the square root of a complex number is a real number. Lemma for resqrtval 41140 and imsqrtval 41141. (Contributed by RP, 11-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
Theorem | sqrtcval 41138 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 14831 and crimi 14832. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | ||
Theorem | sqrtcval2 41139 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 41138. (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) | ||
Theorem | resqrtval 41140 | Real part of the complex square root. (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(√‘𝐴)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) | ||
Theorem | imsqrtval 41141 | Imaginary part of the complex square root. (Contributed by RP, 18-May-2024.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘(√‘𝐴)) = (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) | ||
Theorem | resqrtvalex 41142 | Example for resqrtval 41140. (Contributed by RP, 21-May-2024.) |
⊢ (ℜ‘(√‘(;15 + (i · 8)))) = 4 | ||
Theorem | imsqrtvalex 41143 | Example for imsqrtval 41141. (Contributed by RP, 21-May-2024.) |
⊢ (ℑ‘(√‘(;15 + (i · 8)))) = 1 | ||
Theorem | al3im 41144 | Version of ax-4 1813 for a nested implication. (Contributed by RP, 13-Apr-2020.) |
⊢ (∀𝑥(𝜑 → (𝜓 → (𝜒 → 𝜃))) → (∀𝑥𝜑 → (∀𝑥𝜓 → (∀𝑥𝜒 → ∀𝑥𝜃)))) | ||
Theorem | intima0 41145* | Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
Theorem | elimaint 41146* | Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
Theorem | cnviun 41147* | Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 | ||
Theorem | imaiun1 41148* | The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) | ||
Theorem | coiun1 41149* | Composition with an indexed union. Proof analgous to that of coiun 6149. (Contributed by RP, 20-Jun-2020.) |
⊢ (∪ 𝑥 ∈ 𝐶 𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
Theorem | elintima 41150* | Element of intersection of images. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
Theorem | intimass 41151* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
Theorem | intimass2 41152* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) | ||
Theorem | intimag 41153* | Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.) |
⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) | ||
Theorem | intimasn 41154* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | ||
Theorem | intimasn2 41155* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) | ||
Theorem | ss2iundf 41156* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | ss2iundv 41157* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | cbviuneq12df 41158* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | cbviuneq12dv 41159* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
Theorem | conrel1d 41160 | Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) | ||
Theorem | conrel2d 41161 | Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) | ||
Theorem | trrelind 41162 | The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) & ⊢ (𝜑 → 𝑇 = (𝑅 ∩ 𝑆)) ⇒ ⊢ (𝜑 → (𝑇 ∘ 𝑇) ⊆ 𝑇) | ||
Theorem | xpintrreld 41163 | The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
Theorem | restrreld 41164 | The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
Theorem | trrelsuperreldg 41165 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
Theorem | trficl 41166* | The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | cnvtrrel 41167 | The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) | ||
Theorem | trrelsuperrel2dg 41168 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.) |
⊢ (𝜑 → 𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
Syntax | crcl 41169 | Extend class notation with reflexive closure. |
class r* | ||
Definition | df-rcl 41170* | Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) | ||
Theorem | dfrcl2 41171 | Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) | ||
Theorem | dfrcl3 41172 | Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ ((𝑥↑𝑟0) ∪ (𝑥↑𝑟1))) | ||
Theorem | dfrcl4 41173* | Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) | ||
In order for theorems on the transitive closure of a relation to be grouped together before the concept of continuity, we really need an analogue of ↑𝑟 that works on finite ordinals or finite sets instead of natural numbers. | ||
Theorem | relexp2 41174 | A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟2) = (𝑅 ∘ 𝑅)) | ||
Theorem | relexpnul 41175 | If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ Rel 𝑅) ∧ (𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)) → ((dom (𝑅↑𝑟𝑁) ∩ ran (𝑅↑𝑟𝑀)) = ∅ ↔ (𝑅↑𝑟(𝑁 + 𝑀)) = ∅)) | ||
Theorem | eliunov2 41176* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 14697. (Contributed by RP, 1-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
Theorem | eltrclrec 41177* | Membership in the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
Theorem | elrtrclrec 41178* | Membership in the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
Theorem | briunov2 41179* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
Theorem | brmptiunrelexpd 41180* | If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 14697. (Contributed by RP, 21-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvmptiunrelexplb0d 41181* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) | ||
Theorem | fvmptiunrelexplb0da 41182* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) | ||
Theorem | fvmptiunrelexplb1d 41183* | If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 1 ∈ 𝑁) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝐶‘𝑅)) | ||
Theorem | brfvid 41184 | If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
Theorem | brfvidRP 41185 | If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd 41180. (Contributed by RP, 21-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
Theorem | fvilbd 41186 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
Theorem | fvilbdRP 41187 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
Theorem | brfvrcld 41188 | If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) | ||
Theorem | brfvrcld2 41189 | If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) | ||
Theorem | fvrcllb0d 41190 | A restriction of the identity relation is a subset of the reflexive closure of a set. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (r*‘𝑅)) | ||
Theorem | fvrcllb0da 41191 | A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (r*‘𝑅)) | ||
Theorem | fvrcllb1d 41192 | A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (r*‘𝑅)) | ||
Theorem | brtrclrec 41193* | Two classes related by the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
Theorem | brrtrclrec 41194* | Two classes related by the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
Theorem | briunov2uz 41195* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
Theorem | eliunov2uz 41196* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
Theorem | ov2ssiunov2 41197* | Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14696 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) | ||
Theorem | relexp0eq 41198 | The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) | ||
Theorem | iunrelexp0 41199* | Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) | ||
Theorem | relexpxpnnidm 41200 | Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |