Detailed syntax breakdown of Definition df-imdir
Step | Hyp | Ref
| Expression |
1 | | cimdir 35276 |
. 2
class
𝒫* |
2 | | va |
. . 3
setvar 𝑎 |
3 | | vb |
. . 3
setvar 𝑏 |
4 | | cvv 3422 |
. . 3
class
V |
5 | | vr |
. . . 4
setvar 𝑟 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑎 |
7 | 3 | cv 1538 |
. . . . . 6
class 𝑏 |
8 | 6, 7 | cxp 5578 |
. . . . 5
class (𝑎 × 𝑏) |
9 | 8 | cpw 4530 |
. . . 4
class 𝒫
(𝑎 × 𝑏) |
10 | | vx |
. . . . . . . . 9
setvar 𝑥 |
11 | 10 | cv 1538 |
. . . . . . . 8
class 𝑥 |
12 | 11, 6 | wss 3883 |
. . . . . . 7
wff 𝑥 ⊆ 𝑎 |
13 | | vy |
. . . . . . . . 9
setvar 𝑦 |
14 | 13 | cv 1538 |
. . . . . . . 8
class 𝑦 |
15 | 14, 7 | wss 3883 |
. . . . . . 7
wff 𝑦 ⊆ 𝑏 |
16 | 12, 15 | wa 395 |
. . . . . 6
wff (𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) |
17 | 5 | cv 1538 |
. . . . . . . 8
class 𝑟 |
18 | 17, 11 | cima 5583 |
. . . . . . 7
class (𝑟 “ 𝑥) |
19 | 18, 14 | wceq 1539 |
. . . . . 6
wff (𝑟 “ 𝑥) = 𝑦 |
20 | 16, 19 | wa 395 |
. . . . 5
wff ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦) |
21 | 20, 10, 13 | copab 5132 |
. . . 4
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)} |
22 | 5, 9, 21 | cmpt 5153 |
. . 3
class (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)}) |
23 | 2, 3, 4, 4, 22 | cmpo 7257 |
. 2
class (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
24 | 1, 23 | wceq 1539 |
1
wff
𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)})) |