| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for bj-imdirval 37204 and bj-iminvval 37216. (Contributed by BJ, 23-May-2024.) |
| Ref | Expression |
|---|---|
| bj-imdirvallem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| bj-imdirvallem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| bj-imdirvallem.df | ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) |
| Ref | Expression |
|---|---|
| bj-imdirvallem | ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-imdirvallem.df | . . 3 ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}))) |
| 3 | xpeq12 5684 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵)) | |
| 4 | 3 | pweqd 4597 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
| 6 | sseq2 3990 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑥 ⊆ 𝑎 ↔ 𝑥 ⊆ 𝐴)) | |
| 7 | sseq2 3990 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑦 ⊆ 𝑏 ↔ 𝑦 ⊆ 𝐵)) | |
| 8 | 6, 7 | bi2anan9 638 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵))) |
| 9 | 8 | anbi1d 631 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓))) |
| 10 | 9 | opabbidv 5190 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
| 12 | 5, 11 | mpteq12dv 5212 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
| 13 | bj-imdirvallem.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 14 | 13 | elexd 3488 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 15 | bj-imdirvallem.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 16 | 15 | elexd 3488 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 17 | 13, 15 | xpexd 7750 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 18 | 17 | pwexd 5354 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V) |
| 19 | 18 | mptexd 7221 | . 2 ⊢ (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) ∈ V) |
| 20 | 2, 12, 14, 16, 19 | ovmpod 7564 | 1 ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 {copab 5186 ↦ cmpt 5206 × cxp 5657 (class class class)co 7410 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: bj-imdirval 37204 bj-iminvval 37216 |
| Copyright terms: Public domain | W3C validator |