![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirvallem | Structured version Visualization version GIF version |
Description: Lemma for bj-imdirval 36552 and bj-iminvval 36564. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-imdirvallem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirvallem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-imdirvallem.df | ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) |
Ref | Expression |
---|---|
bj-imdirvallem | ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirvallem.df | . . 3 ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}))) |
3 | xpeq12 5691 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵)) | |
4 | 3 | pweqd 4611 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
6 | sseq2 4000 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑥 ⊆ 𝑎 ↔ 𝑥 ⊆ 𝐴)) | |
7 | sseq2 4000 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑦 ⊆ 𝑏 ↔ 𝑦 ⊆ 𝐵)) | |
8 | 6, 7 | bi2anan9 636 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵))) |
9 | 8 | anbi1d 629 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓))) |
10 | 9 | opabbidv 5204 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
12 | 5, 11 | mpteq12dv 5229 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
13 | bj-imdirvallem.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
14 | 13 | elexd 3487 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
15 | bj-imdirvallem.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
16 | 15 | elexd 3487 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
17 | 13, 15 | xpexd 7731 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
18 | 17 | pwexd 5367 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V) |
19 | 18 | mptexd 7217 | . 2 ⊢ (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) ∈ V) |
20 | 2, 12, 14, 16, 19 | ovmpod 7552 | 1 ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 𝒫 cpw 4594 {copab 5200 ↦ cmpt 5221 × cxp 5664 (class class class)co 7401 ∈ cmpo 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 |
This theorem is referenced by: bj-imdirval 36552 bj-iminvval 36564 |
Copyright terms: Public domain | W3C validator |