Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirvallem | Structured version Visualization version GIF version |
Description: Lemma for bj-imdirval 35348 and bj-iminvval 35360. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-imdirvallem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirvallem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-imdirvallem.df | ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) |
Ref | Expression |
---|---|
bj-imdirvallem | ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirvallem.df | . . 3 ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}))) |
3 | xpeq12 5615 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵)) | |
4 | 3 | pweqd 4558 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
6 | sseq2 3952 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑥 ⊆ 𝑎 ↔ 𝑥 ⊆ 𝐴)) | |
7 | sseq2 3952 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑦 ⊆ 𝑏 ↔ 𝑦 ⊆ 𝐵)) | |
8 | 6, 7 | bi2anan9 636 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵))) |
9 | 8 | anbi1d 630 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓))) |
10 | 9 | opabbidv 5145 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
11 | 10 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
12 | 5, 11 | mpteq12dv 5170 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
13 | bj-imdirvallem.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
14 | 13 | elexd 3451 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
15 | bj-imdirvallem.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
16 | 15 | elexd 3451 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
17 | 13, 15 | xpexd 7595 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
18 | 17 | pwexd 5306 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V) |
19 | 18 | mptexd 7097 | . 2 ⊢ (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) ∈ V) |
20 | 2, 12, 14, 16, 19 | ovmpod 7419 | 1 ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 𝒫 cpw 4539 {copab 5141 ↦ cmpt 5162 × cxp 5588 (class class class)co 7271 ∈ cmpo 7273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 |
This theorem is referenced by: bj-imdirval 35348 bj-iminvval 35360 |
Copyright terms: Public domain | W3C validator |