Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirvallem Structured version   Visualization version   GIF version

Theorem bj-imdirvallem 37156
Description: Lemma for bj-imdirval 37157 and bj-iminvval 37169. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-imdirvallem.1 (𝜑𝐴𝑈)
bj-imdirvallem.2 (𝜑𝐵𝑉)
bj-imdirvallem.df 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}))
Assertion
Ref Expression
bj-imdirvallem (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝜑,𝑎,𝑏,𝑟   𝜓,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑟)   𝐶(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem bj-imdirvallem
StepHypRef Expression
1 bj-imdirvallem.df . . 3 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}))
21a1i 11 . 2 (𝜑𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)})))
3 xpeq12 5648 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
43pweqd 4570 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
54adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
6 sseq2 3964 . . . . . . 7 (𝑎 = 𝐴 → (𝑥𝑎𝑥𝐴))
7 sseq2 3964 . . . . . . 7 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
86, 7bi2anan9 638 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑥𝑎𝑦𝑏) ↔ (𝑥𝐴𝑦𝐵)))
98anbi1d 631 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑥𝑎𝑦𝑏) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)))
109opabbidv 5161 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
1110adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
125, 11mpteq12dv 5182 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
13 bj-imdirvallem.1 . . 3 (𝜑𝐴𝑈)
1413elexd 3462 . 2 (𝜑𝐴 ∈ V)
15 bj-imdirvallem.2 . . 3 (𝜑𝐵𝑉)
1615elexd 3462 . 2 (𝜑𝐵 ∈ V)
1713, 15xpexd 7691 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
1817pwexd 5321 . . 3 (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V)
1918mptexd 7164 . 2 (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}) ∈ V)
202, 12, 14, 16, 19ovmpod 7505 1 (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  𝒫 cpw 4553  {copab 5157  cmpt 5176   × cxp 5621  (class class class)co 7353  cmpo 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358
This theorem is referenced by:  bj-imdirval  37157  bj-iminvval  37169
  Copyright terms: Public domain W3C validator