![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirvallem | Structured version Visualization version GIF version |
Description: Lemma for bj-imdirval 36654 and bj-iminvval 36666. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-imdirvallem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-imdirvallem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-imdirvallem.df | ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) |
Ref | Expression |
---|---|
bj-imdirvallem | ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirvallem.df | . . 3 ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}))) |
3 | xpeq12 5697 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵)) | |
4 | 3 | pweqd 4615 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
6 | sseq2 4004 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑥 ⊆ 𝑎 ↔ 𝑥 ⊆ 𝐴)) | |
7 | sseq2 4004 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑦 ⊆ 𝑏 ↔ 𝑦 ⊆ 𝐵)) | |
8 | 6, 7 | bi2anan9 637 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵))) |
9 | 8 | anbi1d 630 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓))) |
10 | 9 | opabbidv 5208 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) |
12 | 5, 11 | mpteq12dv 5233 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
13 | bj-imdirvallem.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
14 | 13 | elexd 3491 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
15 | bj-imdirvallem.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
16 | 15 | elexd 3491 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
17 | 13, 15 | xpexd 7747 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
18 | 17 | pwexd 5373 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V) |
19 | 18 | mptexd 7230 | . 2 ⊢ (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)}) ∈ V) |
20 | 2, 12, 14, 16, 19 | ovmpod 7567 | 1 ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 𝒫 cpw 4598 {copab 5204 ↦ cmpt 5225 × cxp 5670 (class class class)co 7414 ∈ cmpo 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: bj-imdirval 36654 bj-iminvval 36666 |
Copyright terms: Public domain | W3C validator |