Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirvallem Structured version   Visualization version   GIF version

Theorem bj-imdirvallem 37203
Description: Lemma for bj-imdirval 37204 and bj-iminvval 37216. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-imdirvallem.1 (𝜑𝐴𝑈)
bj-imdirvallem.2 (𝜑𝐵𝑉)
bj-imdirvallem.df 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}))
Assertion
Ref Expression
bj-imdirvallem (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝜑,𝑎,𝑏,𝑟   𝜓,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑟)   𝐶(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem bj-imdirvallem
StepHypRef Expression
1 bj-imdirvallem.df . . 3 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}))
21a1i 11 . 2 (𝜑𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)})))
3 xpeq12 5684 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
43pweqd 4597 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
54adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
6 sseq2 3990 . . . . . . 7 (𝑎 = 𝐴 → (𝑥𝑎𝑥𝐴))
7 sseq2 3990 . . . . . . 7 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
86, 7bi2anan9 638 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑥𝑎𝑦𝑏) ↔ (𝑥𝐴𝑦𝐵)))
98anbi1d 631 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑥𝑎𝑦𝑏) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)))
109opabbidv 5190 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
1110adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
125, 11mpteq12dv 5212 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
13 bj-imdirvallem.1 . . 3 (𝜑𝐴𝑈)
1413elexd 3488 . 2 (𝜑𝐴 ∈ V)
15 bj-imdirvallem.2 . . 3 (𝜑𝐵𝑉)
1615elexd 3488 . 2 (𝜑𝐵 ∈ V)
1713, 15xpexd 7750 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
1817pwexd 5354 . . 3 (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V)
1918mptexd 7221 . 2 (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}) ∈ V)
202, 12, 14, 16, 19ovmpod 7564 1 (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580  {copab 5186  cmpt 5206   × cxp 5657  (class class class)co 7410  cmpo 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415
This theorem is referenced by:  bj-imdirval  37204  bj-iminvval  37216
  Copyright terms: Public domain W3C validator