Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirvallem Structured version   Visualization version   GIF version

Theorem bj-imdirvallem 37163
Description: Lemma for bj-imdirval 37164 and bj-iminvval 37176. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-imdirvallem.1 (𝜑𝐴𝑈)
bj-imdirvallem.2 (𝜑𝐵𝑉)
bj-imdirvallem.df 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}))
Assertion
Ref Expression
bj-imdirvallem (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝜑,𝑎,𝑏,𝑟   𝜓,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑟)   𝐶(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem bj-imdirvallem
StepHypRef Expression
1 bj-imdirvallem.df . . 3 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}))
21a1i 11 . 2 (𝜑𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)})))
3 xpeq12 5714 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
43pweqd 4622 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
54adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
6 sseq2 4022 . . . . . . 7 (𝑎 = 𝐴 → (𝑥𝑎𝑥𝐴))
7 sseq2 4022 . . . . . . 7 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
86, 7bi2anan9 638 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑥𝑎𝑦𝑏) ↔ (𝑥𝐴𝑦𝐵)))
98anbi1d 631 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑥𝑎𝑦𝑏) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)))
109opabbidv 5214 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
1110adantl 481 . . 3 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
125, 11mpteq12dv 5239 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝜓)}) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
13 bj-imdirvallem.1 . . 3 (𝜑𝐴𝑈)
1413elexd 3502 . 2 (𝜑𝐴 ∈ V)
15 bj-imdirvallem.2 . . 3 (𝜑𝐵𝑉)
1615elexd 3502 . 2 (𝜑𝐵 ∈ V)
1713, 15xpexd 7770 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
1817pwexd 5385 . . 3 (𝜑 → 𝒫 (𝐴 × 𝐵) ∈ V)
1918mptexd 7244 . 2 (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}) ∈ V)
202, 12, 14, 16, 19ovmpod 7585 1 (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605  {copab 5210  cmpt 5231   × cxp 5687  (class class class)co 7431  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  bj-imdirval  37164  bj-iminvval  37176
  Copyright terms: Public domain W3C validator