Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-iminv Structured version   Visualization version   GIF version

Definition df-iminv 35006
Description: Definition of the functionalized inverse image, which maps a binary relation between two given sets to its associated inverse image relation. (Contributed by BJ, 23-Dec-2023.)
Assertion
Ref Expression
df-iminv 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
Distinct variable group:   𝑎,𝑏,𝑟,𝑥,𝑦

Detailed syntax breakdown of Definition df-iminv
StepHypRef Expression
1 ciminv 35005 . 2 class 𝒫*
2 va . . 3 setvar 𝑎
3 vb . . 3 setvar 𝑏
4 cvv 3398 . . 3 class V
5 vr . . . 4 setvar 𝑟
62cv 1541 . . . . . 6 class 𝑎
73cv 1541 . . . . . 6 class 𝑏
86, 7cxp 5523 . . . . 5 class (𝑎 × 𝑏)
98cpw 4488 . . . 4 class 𝒫 (𝑎 × 𝑏)
10 vx . . . . . . . . 9 setvar 𝑥
1110cv 1541 . . . . . . . 8 class 𝑥
1211, 6wss 3843 . . . . . . 7 wff 𝑥𝑎
13 vy . . . . . . . . 9 setvar 𝑦
1413cv 1541 . . . . . . . 8 class 𝑦
1514, 7wss 3843 . . . . . . 7 wff 𝑦𝑏
1612, 15wa 399 . . . . . 6 wff (𝑥𝑎𝑦𝑏)
175cv 1541 . . . . . . . . 9 class 𝑟
1817ccnv 5524 . . . . . . . 8 class 𝑟
1918, 14cima 5528 . . . . . . 7 class (𝑟𝑦)
2011, 19wceq 1542 . . . . . 6 wff 𝑥 = (𝑟𝑦)
2116, 20wa 399 . . . . 5 wff ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))
2221, 10, 13copab 5092 . . . 4 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}
235, 9, 22cmpt 5110 . . 3 class (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))})
242, 3, 4, 4, 23cmpo 7174 . 2 class (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
251, 24wceq 1542 1 wff 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
Colors of variables: wff setvar class
This definition is referenced by:  bj-iminvval  35007
  Copyright terms: Public domain W3C validator