Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvval | Structured version Visualization version GIF version |
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
Ref | Expression |
---|---|
bj-iminvval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
bj-iminvval.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
bj-iminvval | ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-iminvval.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | bj-iminvval.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | df-iminv 35266 | . 2 ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) | |
4 | 1, 2, 3 | bj-imdirvallem 35254 | 1 ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ⊆ wss 3884 𝒫 cpw 4530 {copab 5132 ↦ cmpt 5152 × cxp 5577 ◡ccnv 5578 “ cima 5582 (class class class)co 7252 𝒫*ciminv 35265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-iminv 35266 |
This theorem is referenced by: bj-iminvval2 35268 |
Copyright terms: Public domain | W3C validator |