Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvval Structured version   Visualization version   GIF version

Theorem bj-iminvval 35267
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-iminvval.1 (𝜑𝐴𝑈)
bj-iminvval.2 (𝜑𝐵𝑉)
Assertion
Ref Expression
bj-iminvval (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
Distinct variable groups:   𝐴,𝑟,𝑥,𝑦   𝐵,𝑟,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑟)   𝑉(𝑥,𝑦,𝑟)

Proof of Theorem bj-iminvval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-iminvval.1 . 2 (𝜑𝐴𝑈)
2 bj-iminvval.2 . 2 (𝜑𝐵𝑉)
3 df-iminv 35266 . 2 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
41, 2, 3bj-imdirvallem 35254 1 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wss 3884  𝒫 cpw 4530  {copab 5132  cmpt 5152   × cxp 5577  ccnv 5578  cima 5582  (class class class)co 7252  𝒫*ciminv 35265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-iminv 35266
This theorem is referenced by:  bj-iminvval2  35268
  Copyright terms: Public domain W3C validator