Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvval Structured version   Visualization version   GIF version

Theorem bj-iminvval 37194
Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.)
Hypotheses
Ref Expression
bj-iminvval.1 (𝜑𝐴𝑈)
bj-iminvval.2 (𝜑𝐵𝑉)
Assertion
Ref Expression
bj-iminvval (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
Distinct variable groups:   𝐴,𝑟,𝑥,𝑦   𝐵,𝑟,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑟)   𝑉(𝑥,𝑦,𝑟)

Proof of Theorem bj-iminvval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-iminvval.1 . 2 (𝜑𝐴𝑈)
2 bj-iminvval.2 . 2 (𝜑𝐵𝑉)
3 df-iminv 37193 . 2 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
41, 2, 3bj-imdirvallem 37181 1 (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑥 = (𝑟𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  𝒫 cpw 4600  {copab 5205  cmpt 5225   × cxp 5683  ccnv 5684  cima 5688  (class class class)co 7431  𝒫*ciminv 37192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-iminv 37193
This theorem is referenced by:  bj-iminvval2  37195
  Copyright terms: Public domain W3C validator