Detailed syntax breakdown of Definition df-ind
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cind 32835 | . 2
class
𝟭 | 
| 2 |  | vo | . . 3
setvar 𝑜 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | va | . . . 4
setvar 𝑎 | 
| 5 | 2 | cv 1539 | . . . . 5
class 𝑜 | 
| 6 | 5 | cpw 4600 | . . . 4
class 𝒫
𝑜 | 
| 7 |  | vx | . . . . 5
setvar 𝑥 | 
| 8 | 7, 4 | wel 2109 | . . . . . 6
wff 𝑥 ∈ 𝑎 | 
| 9 |  | c1 11156 | . . . . . 6
class
1 | 
| 10 |  | cc0 11155 | . . . . . 6
class
0 | 
| 11 | 8, 9, 10 | cif 4525 | . . . . 5
class if(𝑥 ∈ 𝑎, 1, 0) | 
| 12 | 7, 5, 11 | cmpt 5225 | . . . 4
class (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)) | 
| 13 | 4, 6, 12 | cmpt 5225 | . . 3
class (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | 
| 14 | 2, 3, 13 | cmpt 5225 | . 2
class (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | 
| 15 | 1, 14 | wceq 1540 | 1
wff 𝟭 =
(𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |