| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indv | Structured version Visualization version GIF version | ||
| Description: Value of the indicator function generator with domain 𝑂. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| Ref | Expression |
|---|---|
| indv | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ind 32782 | . 2 ⊢ 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
| 2 | pweq 4585 | . . 3 ⊢ (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂) | |
| 3 | mpteq1 5204 | . . 3 ⊢ (𝑜 = 𝑂 → (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
| 4 | 2, 3 | mpteq12dv 5202 | . 2 ⊢ (𝑜 = 𝑂 → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| 5 | elex 3476 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ V) | |
| 6 | pwexg 5341 | . . 3 ⊢ (𝑂 ∈ V → 𝒫 𝑂 ∈ V) | |
| 7 | mptexg 7202 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) | |
| 8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6998 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ifcif 4496 𝒫 cpw 4571 ↦ cmpt 5196 ‘cfv 6519 0cc0 11086 1c1 11087 𝟭cind 32781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ind 32782 |
| This theorem is referenced by: indval 32784 indf1o 32795 |
| Copyright terms: Public domain | W3C validator |