Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indv Structured version   Visualization version   GIF version

Theorem indv 32833
Description: Value of the indicator function generator with domain 𝑂. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indv (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
Distinct variable groups:   𝑥,𝑎,𝑂   𝑉,𝑎
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem indv
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 df-ind 32832 . 2 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0))))
2 pweq 4561 . . 3 (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂)
3 mpteq1 5178 . . 3 (𝑜 = 𝑂 → (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)))
42, 3mpteq12dv 5176 . 2 (𝑜 = 𝑂 → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
5 elex 3457 . 2 (𝑂𝑉𝑂 ∈ V)
6 pwexg 5314 . . 3 (𝑂 ∈ V → 𝒫 𝑂 ∈ V)
7 mptexg 7155 . . 3 (𝒫 𝑂 ∈ V → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) ∈ V)
85, 6, 73syl 18 . 2 (𝑂𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) ∈ V)
91, 4, 5, 8fvmptd3 6952 1 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4472  𝒫 cpw 4547  cmpt 5170  cfv 6481  0cc0 11006  1c1 11007  𝟭cind 32831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ind 32832
This theorem is referenced by:  indval  32834  indf1o  32845
  Copyright terms: Public domain W3C validator