| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indv | Structured version Visualization version GIF version | ||
| Description: Value of the indicator function generator with domain 𝑂. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| Ref | Expression |
|---|---|
| indv | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ind 32774 | . 2 ⊢ 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
| 2 | pweq 4577 | . . 3 ⊢ (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂) | |
| 3 | mpteq1 5196 | . . 3 ⊢ (𝑜 = 𝑂 → (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
| 4 | 2, 3 | mpteq12dv 5194 | . 2 ⊢ (𝑜 = 𝑂 → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| 5 | elex 3468 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ V) | |
| 6 | pwexg 5333 | . . 3 ⊢ (𝑂 ∈ V → 𝒫 𝑂 ∈ V) | |
| 7 | mptexg 7195 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) | |
| 8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) |
| 9 | 1, 4, 5, 8 | fvmptd3 6991 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 𝒫 cpw 4563 ↦ cmpt 5188 ‘cfv 6511 0cc0 11068 1c1 11069 𝟭cind 32773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ind 32774 |
| This theorem is referenced by: indval 32776 indf1o 32787 |
| Copyright terms: Public domain | W3C validator |