Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indv Structured version   Visualization version   GIF version

Theorem indv 32796
Description: Value of the indicator function generator with domain 𝑂. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indv (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
Distinct variable groups:   𝑥,𝑎,𝑂   𝑉,𝑎
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem indv
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 df-ind 32795 . 2 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0))))
2 pweq 4565 . . 3 (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂)
3 mpteq1 5181 . . 3 (𝑜 = 𝑂 → (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)))
42, 3mpteq12dv 5179 . 2 (𝑜 = 𝑂 → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
5 elex 3457 . 2 (𝑂𝑉𝑂 ∈ V)
6 pwexg 5317 . . 3 (𝑂 ∈ V → 𝒫 𝑂 ∈ V)
7 mptexg 7157 . . 3 (𝒫 𝑂 ∈ V → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) ∈ V)
85, 6, 73syl 18 . 2 (𝑂𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) ∈ V)
91, 4, 5, 8fvmptd3 6953 1 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  ifcif 4476  𝒫 cpw 4551  cmpt 5173  cfv 6482  0cc0 11009  1c1 11010  𝟭cind 32794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ind 32795
This theorem is referenced by:  indval  32797  indf1o  32808
  Copyright terms: Public domain W3C validator