| Metamath
Proof Explorer Theorem List (p. 331 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | chnind 33001* | Induction over a chain. See nnind 12284 for an explanation about the hypotheses. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝑐 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑑 → (𝜓 ↔ 𝜃)) & ⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (𝜓 ↔ 𝜏)) & ⊢ (𝑐 = 𝐶 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝜒) & ⊢ (((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | chnub 33002 | In a chain, the last element is an upper bound. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘𝐶) − 1))) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (lastS‘𝐶)) | ||
| Theorem | chnlt 33003 | Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) | ||
| Theorem | chnso 33004 | A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶) | ||
| Theorem | chnccats1 33005 | Extend a chain with a single element. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋)) ⇒ ⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉) ∈ ( < Chain𝐴)) | ||
| Axiom | ax-xrssca 33006 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ℝfld = (Scalar‘ℝ*𝑠) | ||
| Axiom | ax-xrsvsca 33007 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ·e = ( ·𝑠 ‘ℝ*𝑠) | ||
| Theorem | xrs0 33008 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13291 and df-xrs 17547), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ 0 = (0g‘ℝ*𝑠) | ||
| Theorem | xrslt 33009 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ < = (lt‘ℝ*𝑠) | ||
| Theorem | xrsinvgval 33010 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13291 and df-xrs 17547), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) | ||
| Theorem | xrsmulgzz 33011 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrstos 33012 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ Toset | ||
| Theorem | xrsclat 33013 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ CLat | ||
| Theorem | xrsp0 33014 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ -∞ = (0.‘ℝ*𝑠) | ||
| Theorem | xrsp1 33015 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ +∞ = (1.‘ℝ*𝑠) | ||
| Theorem | xrge0base 33016 | The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge00 33017 | The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0plusg 33018 | The additive law of the extended nonnegative real numbers monoid is the addition in the extended real numbers. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0le 33019 | The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018.) |
| ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0mulgnn0 33020 | The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrge0addass 33021 | Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xrge0addgt0 33022 | The sum of nonnegative and positive numbers is positive. See addgtge0 11751. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵)) | ||
| Theorem | xrge0adddir 33023 | Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xrge0adddi 33024 | Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) | ||
| Theorem | xrge0npcan 33025 | Extended nonnegative real version of npcan 11517. (Contributed by Thierry Arnoux, 9-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
| Theorem | fsumrp0cl 33026* | Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | ||
| Theorem | mndcld 33027 | Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | mndassd 33028 | A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | mndlrinv 33029 | In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) & ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | mndlrinvb 33030* | In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndlactf1 33031* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐹 is injective. See also grplactf1o 19062. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑋) = 0 ) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) | ||
| Theorem | mndlactfo 33032* | An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 19062. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 )) | ||
| Theorem | mndractf1 33033* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐺 is injective. See also grplactf1o 19062. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = 0 ) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1→𝐵) | ||
| Theorem | mndractfo 33034* | An element 𝑋 of a monoid 𝐸 is right-invertible iff its right-translation 𝐺 is surjective. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) | ||
| Theorem | mndlactf1o 33035* | An element 𝑋 of a monoid 𝐸 is invertible iff its left-translation 𝐹 is bijective. See also grplactf1o 19062. Remark in chapter I. of [BourbakiAlg1] p. 17. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndractf1o 33036* | An element 𝑋 of a monoid 𝐸 is invertible iff its right-translation 𝐺 is bijective. See also mndlactf1o 33035. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | cmn4d 33037 | Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | cmn246135 33038 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33272. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) | ||
| Theorem | cmn145236 33039 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33272. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊)))) | ||
| Theorem | submcld 33040 | Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | abliso 33041 | The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
| ⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel) | ||
| Theorem | lmhmghmd 33042 | A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | mhmimasplusg 33043 | Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑊 = (𝐹 “s 𝑉) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) & ⊢ + = (+g‘𝑉) & ⊢ ⨣ = (+g‘𝑊) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) | ||
| Theorem | lmhmimasvsca 33044 | Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑊 = (𝐹 “s 𝑉) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) ⇒ ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | grpsubcld 33045 | Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) | ||
| Theorem | subgcld 33046 | A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcld 33047 | A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgmulgcld 33048 | Closure of the group multiple within a subgroup. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑅)) & ⊢ (𝜑 → 𝑍 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑍 · 𝐴) ∈ 𝑆) | ||
| Theorem | gsumsubg 33049 | The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumsra 33050 | The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 Σg 𝐹) = (𝐴 Σg 𝐹)) | ||
| Theorem | gsummpt2co 33051* | Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ 𝐸 ↦ (𝑊 Σg (𝑥 ∈ (◡𝐹 “ {𝑦}) ↦ 𝐶))))) | ||
| Theorem | gsummpt2d 33052* | Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19990. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
| ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) | ||
| Theorem | lmodvslmhm 33053* | Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊)) | ||
| Theorem | gsumvsmul1 33054* | Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20313, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ LMod) & ⊢ (𝜑 → 𝑆 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
| Theorem | gsummptres 33055* | Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) | ||
| Theorem | gsummptres2 33056* | Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) | ||
| Theorem | gsummptfsf1o 33057* | Re-index a finite group sum using a bijection. A version of gsummptf1o 19981 expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ Ⅎ𝑥𝐻 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) | ||
| Theorem | gsumfs2d 33058* | Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 19990 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘〈𝑥, 𝑦〉)))))) | ||
| Theorem | gsumzresunsn 33059 | Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (𝐹‘𝑋) & ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) | ||
| Theorem | gsumpart 33060* | Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ 𝑋 ↦ (𝐺 Σg (𝐹 ↾ 𝐶))))) | ||
| Theorem | gsumtp 33061* | Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) & ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑋) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) & ⊢ (𝜑 → 𝑁 ≠ 𝑂) & ⊢ (𝜑 → 𝑀 ≠ 𝑂) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) | ||
| Theorem | gsumzrsum 33062* | Relate a group sum on ℤring to a finite sum on the complex numbers. See also gsumfsum 21452. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (ℤring Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | gsummulgc2 33063* | A finite group sum multiplied by a constant. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (Σ𝑘 ∈ 𝐴 𝑋 · 𝑌)) | ||
| Theorem | gsumhashmul 33064* | Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(◡𝐹 “ {𝑥})) · 𝑥)))) | ||
| Theorem | xrge0tsmsd 33065* | Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑠))), ℝ*, < )) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝑆}) | ||
| Theorem | xrge0tsmsbi 33066 | Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ 𝐶 = ∪ (𝐺 tsums 𝐹))) | ||
| Theorem | xrge0tsmseq 33067 | Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → 𝐶 = ∪ (𝐺 tsums 𝐹)) | ||
| Theorem | gsumwun 33068* | In a commutative ring, a group sum of a word 𝑊 of characters taken from two submonoids 𝐸 and 𝐹 can be written as a simple sum. (Contributed by Thierry Arnoux, 6-Oct-2025.) |
| ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ CMnd) & ⊢ (𝜑 → 𝐸 ∈ (SubMnd‘𝑀)) & ⊢ (𝜑 → 𝐹 ∈ (SubMnd‘𝑀)) & ⊢ (𝜑 → 𝑊 ∈ Word (𝐸 ∪ 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑒 ∈ 𝐸 ∃𝑓 ∈ 𝐹 (𝑀 Σg 𝑊) = (𝑒 + 𝑓)) | ||
| Theorem | gsumwrd2dccatlem 33069* | Lemma for gsumwrd2dccat 33070. Expose a bijection 𝐹 between (ordered) pairs of words and words with a length of a subword. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝑈 = ∪ 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) & ⊢ 𝐹 = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ 〈((1st ‘𝑎) ++ (2nd ‘𝑎)), (♯‘(1st ‘𝑎))〉) & ⊢ 𝐺 = (𝑏 ∈ 𝑈 ↦ 〈((1st ‘𝑏) prefix (2nd ‘𝑏)), ((1st ‘𝑏) substr 〈(2nd ‘𝑏), (♯‘(1st ‘𝑏))〉)〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹:(Word 𝐴 × Word 𝐴)–1-1-onto→𝑈 ∧ ◡𝐹 = 𝐺)) | ||
| Theorem | gsumwrd2dccat 33070* | Rewrite a sum ranging over pairs of words as a sum of sums over concatenated subwords. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ (𝜑 → 𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝑀 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘〈(𝑤 prefix 𝑗), (𝑤 substr 〈𝑗, (♯‘𝑤)〉)〉)))))) | ||
| Theorem | cntzun 33071 | The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑋 ⊆ 𝐵 ∧ 𝑌 ⊆ 𝐵) → (𝑍‘(𝑋 ∪ 𝑌)) = ((𝑍‘𝑋) ∩ (𝑍‘𝑌))) | ||
| Theorem | cntzsnid 33072 | The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) | ||
| Theorem | cntrcrng 33073 | The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑍 = (𝑅 ↾s (Cntr‘(mulGrp‘𝑅))) ⇒ ⊢ (𝑅 ∈ Ring → 𝑍 ∈ CRing) | ||
| Syntax | comnd 33074 | Extend class notation with the class of all right ordered monoids. |
| class oMnd | ||
| Syntax | cogrp 33075 | Extend class notation with the class of all right ordered groups. |
| class oGrp | ||
| Definition | df-omnd 33076* | Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to (oppg‘𝑀). (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ oMnd = {𝑔 ∈ Mnd ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} | ||
| Definition | df-ogrp 33077 | Define class of all ordered groups. An ordered group is a group with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ oGrp = (Grp ∩ oMnd) | ||
| Theorem | isomnd 33078* | A (left) ordered monoid is a monoid with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ≤ = (le‘𝑀) ⇒ ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) | ||
| Theorem | isogrp 33079 | A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | ||
| Theorem | ogrpgrp 33080 | A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | ||
| Theorem | omndmnd 33081 | A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) | ||
| Theorem | omndtos 33082 | A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) | ||
| Theorem | omndadd 33083 | In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) | ||
| Theorem | omndaddr 33084 | In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (((oppg‘𝑀) ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑍 + 𝑋) ≤ (𝑍 + 𝑌)) | ||
| Theorem | omndadd2d 33085 | In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑍) & ⊢ (𝜑 → 𝑌 ≤ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ CMnd) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | ||
| Theorem | omndadd2rd 33086 | In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑍) & ⊢ (𝜑 → 𝑌 ≤ 𝑊) & ⊢ (𝜑 → (oppg‘𝑀) ∈ oMnd) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≤ (𝑍 + 𝑊)) | ||
| Theorem | submomnd 33087 | A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ ((𝑀 ∈ oMnd ∧ (𝑀 ↾s 𝐴) ∈ Mnd) → (𝑀 ↾s 𝐴) ∈ oMnd) | ||
| Theorem | xrge0omnd 33088 | The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
| ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ oMnd | ||
| Theorem | omndmul2 33089 | In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) ∧ 0 ≤ 𝑋) → 0 ≤ (𝑁 · 𝑋)) | ||
| Theorem | omndmul3 33090 | In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ≤ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 0 ≤ 𝑋) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑃 · 𝑋)) | ||
| Theorem | omndmul 33091 | In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ≤ = (le‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ oMnd) & ⊢ (𝜑 → 𝑀 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ≤ (𝑁 · 𝑌)) | ||
| Theorem | ogrpinv0le 33092 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ≤ = (le‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 ≤ 𝑋 ↔ (𝐼‘𝑋) ≤ 0 )) | ||
| Theorem | ogrpsub 33093 | In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ≤ = (le‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) | ||
| Theorem | ogrpaddlt 33094 | In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍)) | ||
| Theorem | ogrpaddltbi 33095 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 + 𝑍) < (𝑌 + 𝑍))) | ||
| Theorem | ogrpaddltrd 33096 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 < 𝑌) ⇒ ⊢ (𝜑 → (𝑍 + 𝑋) < (𝑍 + 𝑌)) | ||
| Theorem | ogrpaddltrbid 33097 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → (oppg‘𝐺) ∈ oGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌))) | ||
| Theorem | ogrpsublt 33098 | In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 − 𝑍) < (𝑌 − 𝑍)) | ||
| Theorem | ogrpinv0lt 33099 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ (𝐼‘𝑋) < 0 )) | ||
| Theorem | ogrpinvlt 33100 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ < = (lt‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (((𝐺 ∈ oGrp ∧ (oppg‘𝐺) ∈ oGrp) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝐼‘𝑌) < (𝐼‘𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |