![]() |
Metamath
Proof Explorer Theorem List (p. 331 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ismntop 33001* | Property of being a manifold. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
β’ ((π β β0 β§ π½ β π) β (πManTopπ½ β (π½ β 2ndΟ β§ π½ β Haus β§ βπ₯ β π½ βπ¦ β π₯ βπ’ β (π½ β© π« π₯)(π¦ β π’ β§ (π½ βΎt π’) β (TopOpenβ(πΌhilβπ)))))) | ||
Theorem | nexple 33002 | A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017.) |
β’ ((π΄ β β0 β§ π΅ β β β§ 2 β€ π΅) β π΄ β€ (π΅βπ΄)) | ||
Syntax | cind 33003 | Extend class notation with the indicator function generator. |
class π | ||
Definition | df-ind 33004* | Define the indicator function generator. (Contributed by Thierry Arnoux, 20-Jan-2017.) |
β’ π = (π β V β¦ (π β π« π β¦ (π₯ β π β¦ if(π₯ β π, 1, 0)))) | ||
Theorem | indv 33005* | Value of the indicator function generator with domain π. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
β’ (π β π β (πβπ) = (π β π« π β¦ (π₯ β π β¦ if(π₯ β π, 1, 0)))) | ||
Theorem | indval 33006* | Value of the indicator function generator for a set π΄ and a domain π. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
β’ ((π β π β§ π΄ β π) β ((πβπ)βπ΄) = (π₯ β π β¦ if(π₯ β π΄, 1, 0))) | ||
Theorem | indval2 33007 | Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
β’ ((π β π β§ π΄ β π) β ((πβπ)βπ΄) = ((π΄ Γ {1}) βͺ ((π β π΄) Γ {0}))) | ||
Theorem | indf 33008 | An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
β’ ((π β π β§ π΄ β π) β ((πβπ)βπ΄):πβΆ{0, 1}) | ||
Theorem | indfval 33009 | Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
β’ ((π β π β§ π΄ β π β§ π β π) β (((πβπ)βπ΄)βπ) = if(π β π΄, 1, 0)) | ||
Theorem | ind1 33010 | Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
β’ ((π β π β§ π΄ β π β§ π β π΄) β (((πβπ)βπ΄)βπ) = 1) | ||
Theorem | ind0 33011 | Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
β’ ((π β π β§ π΄ β π β§ π β (π β π΄)) β (((πβπ)βπ΄)βπ) = 0) | ||
Theorem | ind1a 33012 | Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
β’ ((π β π β§ π΄ β π β§ π β π) β ((((πβπ)βπ΄)βπ) = 1 β π β π΄)) | ||
Theorem | indpi1 33013 | Preimage of the singleton {1} by the indicator function. See i1f1lem 25205. (Contributed by Thierry Arnoux, 21-Aug-2017.) |
β’ ((π β π β§ π΄ β π) β (β‘((πβπ)βπ΄) β {1}) = π΄) | ||
Theorem | indsum 33014* | Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
β’ (π β π β Fin) & β’ (π β π΄ β π) & β’ ((π β§ π₯ β π) β π΅ β β) β β’ (π β Ξ£π₯ β π ((((πβπ)βπ΄)βπ₯) Β· π΅) = Ξ£π₯ β π΄ π΅) | ||
Theorem | indsumin 33015* | Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π β π) & β’ (π β π΄ β Fin) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ ((π β§ π β π΄) β πΆ β β) β β’ (π β Ξ£π β π΄ ((((πβπ)βπ΅)βπ) Β· πΆ) = Ξ£π β (π΄ β© π΅)πΆ) | ||
Theorem | prodindf 33016* | The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
β’ (π β π β π) & β’ (π β π΄ β Fin) & β’ (π β π΅ β π) & β’ (π β πΉ:π΄βΆπ) β β’ (π β βπ β π΄ (((πβπ)βπ΅)β(πΉβπ)) = if(ran πΉ β π΅, 1, 0)) | ||
Theorem | indf1o 33017 | The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
β’ (π β π β (πβπ):π« πβ1-1-ontoβ({0, 1} βm π)) | ||
Theorem | indpreima 33018 | A function with range {0, 1} as an indicator of the preimage of {1}. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
β’ ((π β π β§ πΉ:πβΆ{0, 1}) β πΉ = ((πβπ)β(β‘πΉ β {1}))) | ||
Theorem | indf1ofs 33019* | The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
β’ (π β π β ((πβπ) βΎ Fin):(π« π β© Fin)β1-1-ontoβ{π β ({0, 1} βm π) β£ (β‘π β {1}) β Fin}) | ||
Syntax | cesum 33020 | Extend class notation to include infinite summations. |
class Ξ£*π β π΄π΅ | ||
Definition | df-esum 33021 | Define a short-hand for the possibly infinite sum over the extended nonnegative reals. Ξ£* is relying on the properties of the tsums, developped by Mario Carneiro. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
β’ Ξ£*π β π΄π΅ = βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) | ||
Theorem | esumex 33022 | An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
β’ Ξ£*π β π΄π΅ β V | ||
Theorem | esumcl 33023* | Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
β’ β²ππ΄ β β’ ((π΄ β π β§ βπ β π΄ π΅ β (0[,]+β)) β Ξ£*π β π΄π΅ β (0[,]+β)) | ||
Theorem | esumeq12dvaf 33024 | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
β’ β²ππ & β’ (π β π΄ = π΅) & β’ ((π β§ π β π΄) β πΆ = π·) β β’ (π β Ξ£*π β π΄πΆ = Ξ£*π β π΅π·) | ||
Theorem | esumeq12dva 33025* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) (Revised by Thierry Arnoux, 29-Jun-2017.) |
β’ (π β π΄ = π΅) & β’ ((π β§ π β π΄) β πΆ = π·) β β’ (π β Ξ£*π β π΄πΆ = Ξ£*π β π΅π·) | ||
Theorem | esumeq12d 33026* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
β’ (π β π΄ = π΅) & β’ (π β πΆ = π·) β β’ (π β Ξ£*π β π΄πΆ = Ξ£*π β π΅π·) | ||
Theorem | esumeq1 33027* | Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
β’ (π΄ = π΅ β Ξ£*π β π΄πΆ = Ξ£*π β π΅πΆ) | ||
Theorem | esumeq1d 33028 | Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
β’ β²ππ & β’ (π β π΄ = π΅) β β’ (π β Ξ£*π β π΄πΆ = Ξ£*π β π΅πΆ) | ||
Theorem | esumeq2 33029* | Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
β’ (βπ β π΄ π΅ = πΆ β Ξ£*π β π΄π΅ = Ξ£*π β π΄πΆ) | ||
Theorem | esumeq2d 33030 | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016.) |
β’ β²ππ & β’ (π β βπ β π΄ π΅ = πΆ) β β’ (π β Ξ£*π β π΄π΅ = Ξ£*π β π΄πΆ) | ||
Theorem | esumeq2dv 33031* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
β’ ((π β§ π β π΄) β π΅ = πΆ) β β’ (π β Ξ£*π β π΄π΅ = Ξ£*π β π΄πΆ) | ||
Theorem | esumeq2sdv 33032* | Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
β’ (π β π΅ = πΆ) β β’ (π β Ξ£*π β π΄π΅ = Ξ£*π β π΄πΆ) | ||
Theorem | nfesum1 33033 | Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
β’ β²ππ΄ β β’ β²πΞ£*π β π΄π΅ | ||
Theorem | nfesum2 33034* | Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.) |
β’ β²π₯π΄ & β’ β²π₯π΅ β β’ β²π₯Ξ£*π β π΄π΅ | ||
Theorem | cbvesum 33035* | Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
β’ (π = π β π΅ = πΆ) & β’ β²ππ΄ & β’ β²ππ΄ & β’ β²ππ΅ & β’ β²ππΆ β β’ Ξ£*π β π΄π΅ = Ξ£*π β π΄πΆ | ||
Theorem | cbvesumv 33036* | Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
β’ (π = π β π΅ = πΆ) β β’ Ξ£*π β π΄π΅ = Ξ£*π β π΄πΆ | ||
Theorem | esumid 33037 | Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β πΆ β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅))) β β’ (π β Ξ£*π β π΄π΅ = πΆ) | ||
Theorem | esumgsum 33038 | A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) β β’ (π β Ξ£*π β π΄π΅ = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) | ||
Theorem | esumval 33039* | Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π₯ β (π« π΄ β© Fin)) β ((β*π βΎs (0[,]+β)) Ξ£g (π β π₯ β¦ π΅)) = πΆ) β β’ (π β Ξ£*π β π΄π΅ = sup(ran (π₯ β (π« π΄ β© Fin) β¦ πΆ), β*, < )) | ||
Theorem | esumel 33040* | The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) β β’ (π β Ξ£*π β π΄π΅ β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅))) | ||
Theorem | esumnul 33041 | Extended sum over the empty set. (Contributed by Thierry Arnoux, 19-Feb-2017.) |
β’ Ξ£*π₯ β β π΄ = 0 | ||
Theorem | esum0 33042* | Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
β’ β²ππ΄ β β’ (π΄ β π β Ξ£*π β π΄0 = 0) | ||
Theorem | esumf1o 33043* | Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
β’ β²ππ & β’ β²ππ΅ & β’ β²ππ· & β’ β²ππ΄ & β’ β²ππΆ & β’ β²ππΉ & β’ (π = πΊ β π΅ = π·) & β’ (π β π΄ β π) & β’ (π β πΉ:πΆβ1-1-ontoβπ΄) & β’ ((π β§ π β πΆ) β (πΉβπ) = πΊ) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) β β’ (π β Ξ£*π β π΄π΅ = Ξ£*π β πΆπ·) | ||
Theorem | esumc 33044* | Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.) |
β’ β²ππ· & β’ β²ππ & β’ β²ππ΄ & β’ (π¦ = πΆ β π· = π΅) & β’ (π β π΄ β π) & β’ (π β Fun β‘(π β π΄ β¦ πΆ)) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π β π΄) β πΆ β π) β β’ (π β Ξ£*π β π΄π΅ = Ξ£*π¦ β {π§ β£ βπ β π΄ π§ = πΆ}π·) | ||
Theorem | esumrnmpt 33045* | Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.) |
β’ β²ππ΄ & β’ (π¦ = π΅ β πΆ = π·) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π· β (0[,]+β)) & β’ ((π β§ π β π΄) β π΅ β (π β {β })) & β’ (π β Disj π β π΄ π΅) β β’ (π β Ξ£*π¦ β ran (π β π΄ β¦ π΅)πΆ = Ξ£*π β π΄π·) | ||
Theorem | esumsplit 33046 | Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ β²ππ΅ & β’ (π β π΄ β V) & β’ (π β π΅ β V) & β’ (π β (π΄ β© π΅) = β ) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) & β’ ((π β§ π β π΅) β πΆ β (0[,]+β)) β β’ (π β Ξ£*π β (π΄ βͺ π΅)πΆ = (Ξ£*π β π΄πΆ +π Ξ£*π β π΅πΆ)) | ||
Theorem | esummono 33047* | Extended sum is monotonic. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
β’ β²ππ & β’ (π β πΆ β π) & β’ ((π β§ π β πΆ) β π΅ β (0[,]+β)) & β’ (π β π΄ β πΆ) β β’ (π β Ξ£*π β π΄π΅ β€ Ξ£*π β πΆπ΅) | ||
Theorem | esumpad 33048* | Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) & β’ ((π β§ π β π΅) β πΆ = 0) β β’ (π β Ξ£*π β (π΄ βͺ π΅)πΆ = Ξ£*π β π΄πΆ) | ||
Theorem | esumpad2 33049* | Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) & β’ ((π β§ π β π΅) β πΆ = 0) β β’ (π β Ξ£*π β (π΄ β π΅)πΆ = Ξ£*π β π΄πΆ) | ||
Theorem | esumadd 33050* | Addition of infinite sums. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) β β’ (π β Ξ£*π β π΄(π΅ +π πΆ) = (Ξ£*π β π΄π΅ +π Ξ£*π β π΄πΆ)) | ||
Theorem | esumle 33051* | If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) & β’ ((π β§ π β π΄) β π΅ β€ πΆ) β β’ (π β Ξ£*π β π΄π΅ β€ Ξ£*π β π΄πΆ) | ||
Theorem | gsumesum 33052* | Relate a group sum on (β*π βΎs (0[,]+β)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.) |
β’ β²ππ & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) β β’ (π β ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) = Ξ£*π β π΄π΅) | ||
Theorem | esumlub 33053* | The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.) |
β’ β²ππ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β π β β*) & β’ (π β π < Ξ£*π β π΄π΅) β β’ (π β βπ β (π« π΄ β© Fin)π < Ξ£*π β ππ΅) | ||
Theorem | esumaddf 33054* | Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) β β’ (π β Ξ£*π β π΄(π΅ +π πΆ) = (Ξ£*π β π΄π΅ +π Ξ£*π β π΄πΆ)) | ||
Theorem | esumlef 33055* | If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π β π΄) β πΆ β (0[,]+β)) & β’ ((π β§ π β π΄) β π΅ β€ πΆ) β β’ (π β Ξ£*π β π΄π΅ β€ Ξ£*π β π΄πΆ) | ||
Theorem | esumcst 33056* | The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.) |
β’ β²ππ΄ & β’ β²ππ΅ β β’ ((π΄ β π β§ π΅ β (0[,]+β)) β Ξ£*π β π΄π΅ = ((β―βπ΄) Β·e π΅)) | ||
Theorem | esumsnf 33057* | The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.) |
β’ β²ππ΅ & β’ ((π β§ π = π) β π΄ = π΅) & β’ (π β π β π) & β’ (π β π΅ β (0[,]+β)) β β’ (π β Ξ£*π β {π}π΄ = π΅) | ||
Theorem | esumsn 33058* | The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Shortened by Thierry Arnoux, 2-May-2020.) |
β’ ((π β§ π = π) β π΄ = π΅) & β’ (π β π β π) & β’ (π β π΅ β (0[,]+β)) β β’ (π β Ξ£*π β {π}π΄ = π΅) | ||
Theorem | esumpr 33059* | Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
β’ ((π β§ π = π΄) β πΆ = π·) & β’ ((π β§ π = π΅) β πΆ = πΈ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π· β (0[,]+β)) & β’ (π β πΈ β (0[,]+β)) & β’ (π β π΄ β π΅) β β’ (π β Ξ£*π β {π΄, π΅}πΆ = (π· +π πΈ)) | ||
Theorem | esumpr2 33060* | Extended sum over a pair, with a relaxed condition compared to esumpr 33059. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
β’ ((π β§ π = π΄) β πΆ = π·) & β’ ((π β§ π = π΅) β πΆ = πΈ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π· β (0[,]+β)) & β’ (π β πΈ β (0[,]+β)) & β’ (π β (π΄ = π΅ β (π· = 0 β¨ π· = +β))) β β’ (π β Ξ£*π β {π΄, π΅}πΆ = (π· +π πΈ)) | ||
Theorem | esumrnmpt2 33061* | Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020.) |
β’ (π¦ = π΅ β πΆ = π·) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π· β (0[,]+β)) & β’ ((π β§ π β π΄) β π΅ β π) & β’ (((π β§ π β π΄) β§ π΅ = β ) β π· = 0) & β’ (π β Disj π β π΄ π΅) β β’ (π β Ξ£*π¦ β ran (π β π΄ β¦ π΅)πΆ = Ξ£*π β π΄π·) | ||
Theorem | esumfzf 33062* | Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.) |
β’ β²ππΉ β β’ ((πΉ:ββΆ(0[,]+β) β§ π β β) β Ξ£*π β (1...π)(πΉβπ) = (seq1( +π , πΉ)βπ)) | ||
Theorem | esumfsup 33063 | Formulating an extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.) |
β’ β²ππΉ β β’ (πΉ:ββΆ(0[,]+β) β Ξ£*π β β(πΉβπ) = sup(ran seq1( +π , πΉ), β*, < )) | ||
Theorem | esumfsupre 33064 | Formulating an extended sum over integers using the recursive sequence builder. This version is limited to real-valued functions. (Contributed by Thierry Arnoux, 19-Oct-2017.) |
β’ β²ππΉ β β’ (πΉ:ββΆ(0[,)+β) β Ξ£*π β β(πΉβπ) = sup(ran seq1( + , πΉ), β*, < )) | ||
Theorem | esumss 33065 | Change the index set to a subset by adding zeroes. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ β²ππ΅ & β’ (π β π΄ β π΅) & β’ (π β π΅ β π) & β’ ((π β§ π β π΅) β πΆ β (0[,]+β)) & β’ ((π β§ π β (π΅ β π΄)) β πΆ = 0) β β’ (π β Ξ£*π β π΄πΆ = Ξ£*π β π΅πΆ) | ||
Theorem | esumpinfval 33066* | The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
β’ β²ππ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β βπ β π΄ π΅ = +β) β β’ (π β Ξ£*π β π΄π΅ = +β) | ||
Theorem | esumpfinvallem 33067 | Lemma for esumpfinval 33068. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
β’ ((π΄ β π β§ πΉ:π΄βΆ(0[,)+β)) β (βfld Ξ£g πΉ) = ((β*π βΎs (0[,]+β)) Ξ£g πΉ)) | ||
Theorem | esumpfinval 33068* | The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) β β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) | ||
Theorem | esumpfinvalf 33069 | Same as esumpfinval 33068, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.) |
β’ β²ππ΄ & β’ β²ππ & β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) β β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) | ||
Theorem | esumpinfsum 33070* | The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
β’ β²ππ & β’ β²ππ΄ & β’ (π β π΄ β π) & β’ (π β Β¬ π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ ((π β§ π β π΄) β π β€ π΅) & β’ (π β π β β*) & β’ (π β 0 < π) β β’ (π β Ξ£*π β π΄π΅ = +β) | ||
Theorem | esumpcvgval 33071* | The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.) |
β’ ((π β§ π β β) β π΄ β (0[,)+β)) & β’ (π = π β π΄ = π΅) & β’ (π β (π β β β¦ Ξ£π β (1...π)π΄) β dom β ) β β’ (π β Ξ£*π β βπ΄ = Ξ£π β β π΄) | ||
Theorem | esumpmono 33072* | The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
β’ (π β π β β) & β’ (π β π β (β€β₯βπ)) & β’ ((π β§ π β β) β π΄ β (0[,)+β)) β β’ (π β Ξ£*π β (1...π)π΄ β€ Ξ£*π β (1...π)π΄) | ||
Theorem | esumcocn 33073* | Lemma for esummulc2 33075 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
β’ π½ = ((ordTopβ β€ ) βΎt (0[,]+β)) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β πΆ β (π½ Cn π½)) & β’ (π β (πΆβ0) = 0) & β’ ((π β§ π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (πΆβ(π₯ +π π¦)) = ((πΆβπ₯) +π (πΆβπ¦))) β β’ (π β (πΆβΞ£*π β π΄π΅) = Ξ£*π β π΄(πΆβπ΅)) | ||
Theorem | esummulc1 33074* | An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β πΆ β (0[,)+β)) β β’ (π β (Ξ£*π β π΄π΅ Β·e πΆ) = Ξ£*π β π΄(π΅ Β·e πΆ)) | ||
Theorem | esummulc2 33075* | An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β πΆ β (0[,)+β)) β β’ (π β (πΆ Β·e Ξ£*π β π΄π΅) = Ξ£*π β π΄(πΆ Β·e π΅)) | ||
Theorem | esumdivc 33076* | An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β πΆ β β+) β β’ (π β (Ξ£*π β π΄π΅ /π πΆ) = Ξ£*π β π΄(π΅ /π πΆ)) | ||
Theorem | hashf2 33077 | Lemma for hasheuni 33078. (Contributed by Thierry Arnoux, 19-Nov-2016.) |
β’ β―:VβΆ(0[,]+β) | ||
Theorem | hasheuni 33078* | The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15771. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.) |
β’ ((π΄ β π β§ Disj π₯ β π΄ π₯) β (β―ββͺ π΄) = Ξ£*π₯ β π΄(β―βπ₯)) | ||
Theorem | esumcvg 33079* | The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 15672. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) & β’ πΉ = (π β β β¦ Ξ£*π β (1...π)π΄) & β’ ((π β§ π β β) β π΄ β (0[,]+β)) & β’ (π = π β π΄ = π΅) β β’ (π β πΉ(βπ‘βπ½)Ξ£*π β βπ΄) | ||
Theorem | esumcvg2 33080* | Simpler version of esumcvg 33079. (Contributed by Thierry Arnoux, 5-Sep-2017.) |
β’ π½ = (TopOpenβ(β*π βΎs (0[,]+β))) & β’ ((π β§ π β β) β π΄ β (0[,]+β)) & β’ (π = π β π΄ = π΅) & β’ (π = π β π΄ = πΆ) β β’ (π β (π β β β¦ Ξ£*π β (1...π)π΄)(βπ‘βπ½)Ξ£*π β βπ΄) | ||
Theorem | esumcvgsum 33081* | The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.) |
β’ (π = π β π΄ = π΅) & β’ ((π β§ π β β) β π΄ β (0[,)+β)) & β’ ((π β§ π β β) β (πΉβπ) = π΄) & β’ (π β seq1( + , πΉ) β πΏ) & β’ (π β πΏ β β) β β’ (π β Ξ£*π β βπ΄ = Ξ£π β β π΄) | ||
Theorem | esumsup 33082* | Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020.) |
β’ (π β π΅ β (0[,]+β)) & β’ ((π β§ π β β) β π΄ β (0[,]+β)) β β’ (π β Ξ£*π β βπ΄ = sup(ran (π β β β¦ Ξ£*π β (1...π)π΄), β*, < )) | ||
Theorem | esumgect 33083* | "Send π to +β " in an inequality with an extended sum. (Contributed by Thierry Arnoux, 24-May-2020.) |
β’ (π β π΅ β (0[,]+β)) & β’ ((π β§ π β β) β π΄ β (0[,]+β)) & β’ ((π β§ π β β) β Ξ£*π β (1...π)π΄ β€ π΅) β β’ (π β Ξ£*π β βπ΄ β€ π΅) | ||
Theorem | esumcvgre 33084* | All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019.) |
β’ β²ππ & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) & β’ (π β Ξ£*π β π΄π΅ β β) β β’ ((π β§ π β π΄) β π΅ β β) | ||
Theorem | esum2dlem 33085* | Lemma for esum2d 33086 (finite case). (Contributed by Thierry Arnoux, 17-May-2020.) (Proof shortened by AV, 17-Sep-2021.) |
β’ β²ππΉ & β’ (π§ = β¨π, πβ© β πΉ = πΆ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β π) & β’ ((π β§ (π β π΄ β§ π β π΅)) β πΆ β (0[,]+β)) & β’ (π β π΄ β Fin) β β’ (π β Ξ£*π β π΄Ξ£*π β π΅πΆ = Ξ£*π§ β βͺ π β π΄ ({π} Γ π΅)πΉ) | ||
Theorem | esum2d 33086* | Write a double extended sum as a sum over a two-dimensional region. Note that π΅(π) is a function of π. This can be seen as "slicing" the relation π΄. (Contributed by Thierry Arnoux, 17-May-2020.) |
β’ β²ππΉ & β’ (π§ = β¨π, πβ© β πΉ = πΆ) & β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β π) & β’ ((π β§ (π β π΄ β§ π β π΅)) β πΆ β (0[,]+β)) β β’ (π β Ξ£*π β π΄Ξ£*π β π΅πΆ = Ξ£*π§ β βͺ π β π΄ ({π} Γ π΅)πΉ) | ||
Theorem | esumiun 33087* | Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.) |
β’ (π β π΄ β π) & β’ ((π β§ π β π΄) β π΅ β π) & β’ (((π β§ π β π΄) β§ π β π΅) β πΆ β (0[,]+β)) β β’ (π β Ξ£*π β βͺ π β π΄ π΅πΆ β€ Ξ£*π β π΄Ξ£*π β π΅πΆ) | ||
Syntax | cofc 33088 | Extend class notation to include mapping of an operation to an operation for a function and a constant. |
class βf/c π | ||
Definition | df-ofc 33089* | Define the function/constant operation map. The definition is designed so that if π is a binary operation, then βf/c π is the analogous operation on functions and constants. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
β’ βf/c π = (π β V, π β V β¦ (π₯ β dom π β¦ ((πβπ₯)π π))) | ||
Theorem | ofceq 33090 | Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
β’ (π = π β βf/c π = βf/c π) | ||
Theorem | ofcfval 33091* | Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
β’ (π β πΉ Fn π΄) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ π₯ β π΄) β (πΉβπ₯) = π΅) β β’ (π β (πΉ βf/c π πΆ) = (π₯ β π΄ β¦ (π΅π πΆ))) | ||
Theorem | ofcval 33092 | Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ (π β πΉ Fn π΄) & β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ π β π΄) β (πΉβπ) = π΅) β β’ ((π β§ π β π΄) β ((πΉ βf/c π πΆ)βπ) = (π΅π πΆ)) | ||
Theorem | ofcfn 33093 | The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ (π β πΉ Fn π΄) & β’ (π β π΄ β π) & β’ (π β πΆ β π) β β’ (π β (πΉ βf/c π πΆ) Fn π΄) | ||
Theorem | ofcfeqd2 33094* | Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ ((π β§ π₯ β π΄) β (πΉβπ₯) β π΅) & β’ ((π β§ π¦ β π΅) β (π¦π πΆ) = (π¦ππΆ)) & β’ (π β πΉ Fn π΄) & β’ (π β π΄ β π) & β’ (π β πΆ β π) β β’ (π β (πΉ βf/c π πΆ) = (πΉ βf/c ππΆ)) | ||
Theorem | ofcfval3 33095* | General value of (πΉ βf/c π πΆ) with no assumptions on functionality of πΉ. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ ((πΉ β π β§ πΆ β π) β (πΉ βf/c π πΆ) = (π₯ β dom πΉ β¦ ((πΉβπ₯)π πΆ))) | ||
Theorem | ofcf 33096* | The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯π π¦) β π) & β’ (π β πΉ:π΄βΆπ) & β’ (π β π΄ β π) & β’ (π β πΆ β π) β β’ (π β (πΉ βf/c π πΆ):π΄βΆπ) | ||
Theorem | ofcfval2 33097* | The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ (π β π΄ β π) & β’ (π β πΆ β π) & β’ ((π β§ π₯ β π΄) β π΅ β π) & β’ (π β πΉ = (π₯ β π΄ β¦ π΅)) β β’ (π β (πΉ βf/c π πΆ) = (π₯ β π΄ β¦ (π΅π πΆ))) | ||
Theorem | ofcfval4 33098* | The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π΄ β π) & β’ (π β πΆ β π) β β’ (π β (πΉ βf/c π πΆ) = ((π₯ β π΅ β¦ (π₯π πΆ)) β πΉ)) | ||
Theorem | ofcc 33099 | Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) β β’ (π β ((π΄ Γ {π΅}) βf/c π πΆ) = (π΄ Γ {(π΅π πΆ)})) | ||
Theorem | ofcof 33100 | Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.) |
β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π΄ β π) & β’ (π β πΆ β π) β β’ (π β (πΉ βf/c π πΆ) = (πΉ βf π (π΄ Γ {πΆ}))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |