MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-invr Structured version   Visualization version   GIF version

Definition df-invr 19690
Description: Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
Assertion
Ref Expression
df-invr invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))

Detailed syntax breakdown of Definition df-invr
StepHypRef Expression
1 cinvr 19689 . 2 class invr
2 vr . . 3 setvar 𝑟
3 cvv 3408 . . 3 class V
42cv 1542 . . . . . 6 class 𝑟
5 cmgp 19504 . . . . . 6 class mulGrp
64, 5cfv 6380 . . . . 5 class (mulGrp‘𝑟)
7 cui 19657 . . . . . 6 class Unit
84, 7cfv 6380 . . . . 5 class (Unit‘𝑟)
9 cress 16784 . . . . 5 class s
106, 8, 9co 7213 . . . 4 class ((mulGrp‘𝑟) ↾s (Unit‘𝑟))
11 cminusg 18366 . . . 4 class invg
1210, 11cfv 6380 . . 3 class (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))
132, 3, 12cmpt 5135 . 2 class (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
141, 13wceq 1543 1 wff invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
Colors of variables: wff setvar class
This definition is referenced by:  invrfval  19691
  Copyright terms: Public domain W3C validator