| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version | ||
| Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| invrfval | ⊢ 𝐼 = (invg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
| 2 | fveq2 6817 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 3 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 6 | 2, 5 | oveq12d 7359 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
| 9 | 8 | fveq2d 6821 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
| 10 | df-invr 20299 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 11 | fvex 6830 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6924 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 13 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
| 14 | base0 17117 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 15 | eqid 2730 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
| 16 | 14, 15 | grpinvfn 18886 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
| 17 | fn0 6608 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 18 | 16, 17 | mpbi 230 | . . . . 5 ⊢ (invg‘∅) = ∅ |
| 19 | 13, 18 | eqtr4di 2783 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
| 20 | fvprc 6809 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 21 | 20 | oveq1d 7356 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
| 22 | 7, 21 | eqtrid 2777 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
| 23 | ress0 17146 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
| 24 | 22, 23 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
| 25 | 24 | fveq2d 6821 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
| 26 | 19, 25 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 28 | 1, 27 | eqtri 2753 | 1 ⊢ 𝐼 = (invg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 Fn wfn 6472 ‘cfv 6477 (class class class)co 7341 ↾s cress 17133 invgcminusg 18839 mulGrpcmgp 20051 Unitcui 20266 invrcinvr 20298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-addcl 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12118 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-minusg 18842 df-invr 20299 |
| This theorem is referenced by: unitinvcl 20301 unitinvinv 20302 unitlinv 20304 unitrinv 20305 rdivmuldivd 20324 invrpropd 20329 subrgugrp 20499 cntzsdrg 20710 cnmsubglem 21360 psgninv 21512 invrvald 22584 invrcn2 24088 nrginvrcn 24600 nrgtdrg 24601 sum2dchr 27205 ringinvval 33192 dvrcan5 33193 |
| Copyright terms: Public domain | W3C validator |