Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version |
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
invrfval | ⊢ 𝐼 = (invg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
2 | fveq2 6812 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
3 | fveq2 6812 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
6 | 2, 5 | oveq12d 7335 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
8 | 6, 7 | eqtr4di 2795 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
9 | 8 | fveq2d 6816 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
10 | df-invr 19989 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
11 | fvex 6825 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
12 | 9, 10, 11 | fvmpt 6915 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
13 | fvprc 6804 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
14 | base0 16994 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
15 | eqid 2737 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
16 | 14, 15 | grpinvfn 18697 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
17 | fn0 6602 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
18 | 16, 17 | mpbi 229 | . . . . 5 ⊢ (invg‘∅) = ∅ |
19 | 13, 18 | eqtr4di 2795 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
20 | fvprc 6804 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
21 | 20 | oveq1d 7332 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
22 | 7, 21 | eqtrid 2789 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
23 | ress0 17030 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
24 | 22, 23 | eqtrdi 2793 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
25 | 24 | fveq2d 6816 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
26 | 19, 25 | eqtr4d 2780 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
28 | 1, 27 | eqtri 2765 | 1 ⊢ 𝐼 = (invg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4267 Fn wfn 6461 ‘cfv 6466 (class class class)co 7317 ↾s cress 17018 invgcminusg 18654 mulGrpcmgp 19795 Unitcui 19956 invrcinvr 19988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-1cn 11009 ax-addcl 11011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-nn 12054 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-minusg 18657 df-invr 19989 |
This theorem is referenced by: unitinvcl 19991 unitinvinv 19992 unitlinv 19994 unitrinv 19995 invrpropd 20015 subrgugrp 20125 cntzsdrg 20153 cnmsubglem 20744 psgninv 20870 invrvald 21908 invrcn2 23414 nrginvrcn 23939 nrgtdrg 23940 sum2dchr 26505 rdivmuldivd 31623 ringinvval 31624 dvrcan5 31625 |
Copyright terms: Public domain | W3C validator |