| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version | ||
| Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| invrfval | ⊢ 𝐼 = (invg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
| 2 | fveq2 6873 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 3 | fveq2 6873 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 6 | 2, 5 | oveq12d 7418 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 8 | 6, 7 | eqtr4di 2787 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
| 9 | 8 | fveq2d 6877 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
| 10 | df-invr 20335 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 11 | fvex 6886 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6983 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 13 | fvprc 6865 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
| 14 | base0 17220 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 15 | eqid 2734 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
| 16 | 14, 15 | grpinvfn 18951 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
| 17 | fn0 6666 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 18 | 16, 17 | mpbi 230 | . . . . 5 ⊢ (invg‘∅) = ∅ |
| 19 | 13, 18 | eqtr4di 2787 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
| 20 | fvprc 6865 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 21 | 20 | oveq1d 7415 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
| 22 | 7, 21 | eqtrid 2781 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
| 23 | ress0 17251 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
| 24 | 22, 23 | eqtrdi 2785 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
| 25 | 24 | fveq2d 6877 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
| 26 | 19, 25 | eqtr4d 2772 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 28 | 1, 27 | eqtri 2757 | 1 ⊢ 𝐼 = (invg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 ↾s cress 17238 invgcminusg 18904 mulGrpcmgp 20087 Unitcui 20302 invrcinvr 20334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-1cn 11180 ax-addcl 11182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-nn 12234 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-minusg 18907 df-invr 20335 |
| This theorem is referenced by: unitinvcl 20337 unitinvinv 20338 unitlinv 20340 unitrinv 20341 rdivmuldivd 20360 invrpropd 20365 subrgugrp 20538 cntzsdrg 20749 cnmsubglem 21385 psgninv 21529 invrvald 22601 invrcn2 24105 nrginvrcn 24618 nrgtdrg 24619 sum2dchr 27223 ringinvval 33167 dvrcan5 33168 |
| Copyright terms: Public domain | W3C validator |