| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version | ||
| Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| invrfval | ⊢ 𝐼 = (invg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
| 2 | fveq2 6858 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 3 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 6 | 2, 5 | oveq12d 7405 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 8 | 6, 7 | eqtr4di 2782 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
| 9 | 8 | fveq2d 6862 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
| 10 | df-invr 20297 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 11 | fvex 6871 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6968 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 13 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
| 14 | base0 17184 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
| 16 | 14, 15 | grpinvfn 18913 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
| 17 | fn0 6649 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 18 | 16, 17 | mpbi 230 | . . . . 5 ⊢ (invg‘∅) = ∅ |
| 19 | 13, 18 | eqtr4di 2782 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
| 20 | fvprc 6850 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 21 | 20 | oveq1d 7402 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
| 22 | 7, 21 | eqtrid 2776 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
| 23 | ress0 17213 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
| 24 | 22, 23 | eqtrdi 2780 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
| 25 | 24 | fveq2d 6862 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
| 26 | 19, 25 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 28 | 1, 27 | eqtri 2752 | 1 ⊢ 𝐼 = (invg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ↾s cress 17200 invgcminusg 18866 mulGrpcmgp 20049 Unitcui 20264 invrcinvr 20296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-minusg 18869 df-invr 20297 |
| This theorem is referenced by: unitinvcl 20299 unitinvinv 20300 unitlinv 20302 unitrinv 20303 rdivmuldivd 20322 invrpropd 20327 subrgugrp 20500 cntzsdrg 20711 cnmsubglem 21347 psgninv 21491 invrvald 22563 invrcn2 24067 nrginvrcn 24580 nrgtdrg 24581 sum2dchr 27185 ringinvval 33186 dvrcan5 33187 |
| Copyright terms: Public domain | W3C validator |