| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version | ||
| Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| invrfval | ⊢ 𝐼 = (invg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
| 2 | fveq2 6831 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 3 | fveq2 6831 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 6 | 2, 5 | oveq12d 7373 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 8 | 6, 7 | eqtr4di 2786 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
| 9 | 8 | fveq2d 6835 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
| 10 | df-invr 20316 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 11 | fvex 6844 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6938 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 13 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
| 14 | base0 17135 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 15 | eqid 2733 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
| 16 | 14, 15 | grpinvfn 18904 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
| 17 | fn0 6620 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 18 | 16, 17 | mpbi 230 | . . . . 5 ⊢ (invg‘∅) = ∅ |
| 19 | 13, 18 | eqtr4di 2786 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
| 20 | fvprc 6823 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 21 | 20 | oveq1d 7370 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
| 22 | 7, 21 | eqtrid 2780 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
| 23 | ress0 17164 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
| 24 | 22, 23 | eqtrdi 2784 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
| 25 | 24 | fveq2d 6835 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
| 26 | 19, 25 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 28 | 1, 27 | eqtri 2756 | 1 ⊢ 𝐼 = (invg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∅c0 4284 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 ↾s cress 17151 invgcminusg 18857 mulGrpcmgp 20068 Unitcui 20283 invrcinvr 20315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-1cn 11074 ax-addcl 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12136 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-minusg 18860 df-invr 20316 |
| This theorem is referenced by: unitinvcl 20318 unitinvinv 20319 unitlinv 20321 unitrinv 20322 rdivmuldivd 20341 invrpropd 20346 subrgugrp 20516 cntzsdrg 20727 cnmsubglem 21377 psgninv 21529 invrvald 22601 invrcn2 24105 nrginvrcn 24617 nrgtdrg 24618 sum2dchr 27222 ringinvval 33213 dvrcan5 33214 |
| Copyright terms: Public domain | W3C validator |