![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version |
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
invrfval.u | β’ π = (Unitβπ ) |
invrfval.g | β’ πΊ = ((mulGrpβπ ) βΎs π) |
invrfval.i | β’ πΌ = (invrβπ ) |
Ref | Expression |
---|---|
invrfval | β’ πΌ = (invgβπΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invrfval.i | . 2 β’ πΌ = (invrβπ ) | |
2 | fveq2 6888 | . . . . . . 7 β’ (π = π β (mulGrpβπ) = (mulGrpβπ )) | |
3 | fveq2 6888 | . . . . . . . 8 β’ (π = π β (Unitβπ) = (Unitβπ )) | |
4 | invrfval.u | . . . . . . . 8 β’ π = (Unitβπ ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . . 7 β’ (π = π β (Unitβπ) = π) |
6 | 2, 5 | oveq12d 7423 | . . . . . 6 β’ (π = π β ((mulGrpβπ) βΎs (Unitβπ)) = ((mulGrpβπ ) βΎs π)) |
7 | invrfval.g | . . . . . 6 β’ πΊ = ((mulGrpβπ ) βΎs π) | |
8 | 6, 7 | eqtr4di 2790 | . . . . 5 β’ (π = π β ((mulGrpβπ) βΎs (Unitβπ)) = πΊ) |
9 | 8 | fveq2d 6892 | . . . 4 β’ (π = π β (invgβ((mulGrpβπ) βΎs (Unitβπ))) = (invgβπΊ)) |
10 | df-invr 20194 | . . . 4 β’ invr = (π β V β¦ (invgβ((mulGrpβπ) βΎs (Unitβπ)))) | |
11 | fvex 6901 | . . . 4 β’ (invgβπΊ) β V | |
12 | 9, 10, 11 | fvmpt 6995 | . . 3 β’ (π β V β (invrβπ ) = (invgβπΊ)) |
13 | fvprc 6880 | . . . . 5 β’ (Β¬ π β V β (invrβπ ) = β ) | |
14 | base0 17145 | . . . . . . 7 β’ β = (Baseββ ) | |
15 | eqid 2732 | . . . . . . 7 β’ (invgββ ) = (invgββ ) | |
16 | 14, 15 | grpinvfn 18862 | . . . . . 6 β’ (invgββ ) Fn β |
17 | fn0 6678 | . . . . . 6 β’ ((invgββ ) Fn β β (invgββ ) = β ) | |
18 | 16, 17 | mpbi 229 | . . . . 5 β’ (invgββ ) = β |
19 | 13, 18 | eqtr4di 2790 | . . . 4 β’ (Β¬ π β V β (invrβπ ) = (invgββ )) |
20 | fvprc 6880 | . . . . . . . 8 β’ (Β¬ π β V β (mulGrpβπ ) = β ) | |
21 | 20 | oveq1d 7420 | . . . . . . 7 β’ (Β¬ π β V β ((mulGrpβπ ) βΎs π) = (β βΎs π)) |
22 | 7, 21 | eqtrid 2784 | . . . . . 6 β’ (Β¬ π β V β πΊ = (β βΎs π)) |
23 | ress0 17184 | . . . . . 6 β’ (β βΎs π) = β | |
24 | 22, 23 | eqtrdi 2788 | . . . . 5 β’ (Β¬ π β V β πΊ = β ) |
25 | 24 | fveq2d 6892 | . . . 4 β’ (Β¬ π β V β (invgβπΊ) = (invgββ )) |
26 | 19, 25 | eqtr4d 2775 | . . 3 β’ (Β¬ π β V β (invrβπ ) = (invgβπΊ)) |
27 | 12, 26 | pm2.61i 182 | . 2 β’ (invrβπ ) = (invgβπΊ) |
28 | 1, 27 | eqtri 2760 | 1 β’ πΌ = (invgβπΊ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4321 Fn wfn 6535 βcfv 6540 (class class class)co 7405 βΎs cress 17169 invgcminusg 18816 mulGrpcmgp 19981 Unitcui 20161 invrcinvr 20193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-minusg 18819 df-invr 20194 |
This theorem is referenced by: unitinvcl 20196 unitinvinv 20197 unitlinv 20199 unitrinv 20200 rdivmuldivd 20219 invrpropd 20224 subrgugrp 20374 cntzsdrg 20410 cnmsubglem 21000 psgninv 21126 invrvald 22169 invrcn2 23675 nrginvrcn 24200 nrgtdrg 24201 sum2dchr 26766 ringinvval 32372 dvrcan5 32373 |
Copyright terms: Public domain | W3C validator |