| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version | ||
| Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| invrfval | ⊢ 𝐼 = (invg‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
| 2 | fveq2 6876 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 3 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
| 6 | 2, 5 | oveq12d 7423 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 8 | 6, 7 | eqtr4di 2788 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
| 9 | 8 | fveq2d 6880 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
| 10 | df-invr 20348 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 11 | fvex 6889 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6986 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 13 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
| 14 | base0 17233 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 15 | eqid 2735 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
| 16 | 14, 15 | grpinvfn 18964 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
| 17 | fn0 6669 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 18 | 16, 17 | mpbi 230 | . . . . 5 ⊢ (invg‘∅) = ∅ |
| 19 | 13, 18 | eqtr4di 2788 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
| 20 | fvprc 6868 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 21 | 20 | oveq1d 7420 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
| 22 | 7, 21 | eqtrid 2782 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
| 23 | ress0 17264 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
| 24 | 22, 23 | eqtrdi 2786 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
| 25 | 24 | fveq2d 6880 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
| 26 | 19, 25 | eqtr4d 2773 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
| 27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
| 28 | 1, 27 | eqtri 2758 | 1 ⊢ 𝐼 = (invg‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ↾s cress 17251 invgcminusg 18917 mulGrpcmgp 20100 Unitcui 20315 invrcinvr 20347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-minusg 18920 df-invr 20348 |
| This theorem is referenced by: unitinvcl 20350 unitinvinv 20351 unitlinv 20353 unitrinv 20354 rdivmuldivd 20373 invrpropd 20378 subrgugrp 20551 cntzsdrg 20762 cnmsubglem 21398 psgninv 21542 invrvald 22614 invrcn2 24118 nrginvrcn 24631 nrgtdrg 24632 sum2dchr 27237 ringinvval 33230 dvrcan5 33231 |
| Copyright terms: Public domain | W3C validator |