MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrfval Structured version   Visualization version   GIF version

Theorem invrfval 20317
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfval.u 𝑈 = (Unit‘𝑅)
invrfval.g 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
invrfval.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
invrfval 𝐼 = (invg𝐺)

Proof of Theorem invrfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 invrfval.i . 2 𝐼 = (invr𝑅)
2 fveq2 6831 . . . . . . 7 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
3 fveq2 6831 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
4 invrfval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
53, 4eqtr4di 2786 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
62, 5oveq12d 7373 . . . . . 6 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈))
7 invrfval.g . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
86, 7eqtr4di 2786 . . . . 5 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺)
98fveq2d 6835 . . . 4 (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg𝐺))
10 df-invr 20316 . . . 4 invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
11 fvex 6844 . . . 4 (invg𝐺) ∈ V
129, 10, 11fvmpt 6938 . . 3 (𝑅 ∈ V → (invr𝑅) = (invg𝐺))
13 fvprc 6823 . . . . 5 𝑅 ∈ V → (invr𝑅) = ∅)
14 base0 17135 . . . . . . 7 ∅ = (Base‘∅)
15 eqid 2733 . . . . . . 7 (invg‘∅) = (invg‘∅)
1614, 15grpinvfn 18904 . . . . . 6 (invg‘∅) Fn ∅
17 fn0 6620 . . . . . 6 ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅)
1816, 17mpbi 230 . . . . 5 (invg‘∅) = ∅
1913, 18eqtr4di 2786 . . . 4 𝑅 ∈ V → (invr𝑅) = (invg‘∅))
20 fvprc 6823 . . . . . . . 8 𝑅 ∈ V → (mulGrp‘𝑅) = ∅)
2120oveq1d 7370 . . . . . . 7 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈))
227, 21eqtrid 2780 . . . . . 6 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈))
23 ress0 17164 . . . . . 6 (∅ ↾s 𝑈) = ∅
2422, 23eqtrdi 2784 . . . . 5 𝑅 ∈ V → 𝐺 = ∅)
2524fveq2d 6835 . . . 4 𝑅 ∈ V → (invg𝐺) = (invg‘∅))
2619, 25eqtr4d 2771 . . 3 𝑅 ∈ V → (invr𝑅) = (invg𝐺))
2712, 26pm2.61i 182 . 2 (invr𝑅) = (invg𝐺)
281, 27eqtri 2756 1 𝐼 = (invg𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3438  c0 4284   Fn wfn 6484  cfv 6489  (class class class)co 7355  s cress 17151  invgcminusg 18857  mulGrpcmgp 20068  Unitcui 20283  invrcinvr 20315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-1cn 11074  ax-addcl 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12136  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-minusg 18860  df-invr 20316
This theorem is referenced by:  unitinvcl  20318  unitinvinv  20319  unitlinv  20321  unitrinv  20322  rdivmuldivd  20341  invrpropd  20346  subrgugrp  20516  cntzsdrg  20727  cnmsubglem  21377  psgninv  21529  invrvald  22601  invrcn2  24105  nrginvrcn  24617  nrgtdrg  24618  sum2dchr  27222  ringinvval  33213  dvrcan5  33214
  Copyright terms: Public domain W3C validator