![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invrfval | Structured version Visualization version GIF version |
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
invrfval.u | ⊢ 𝑈 = (Unit‘𝑅) |
invrfval.g | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
invrfval.i | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
invrfval | ⊢ 𝐼 = (invg‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invrfval.i | . 2 ⊢ 𝐼 = (invr‘𝑅) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
3 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
4 | invrfval.u | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈) |
6 | 2, 5 | oveq12d 7466 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈)) |
7 | invrfval.g | . . . . . 6 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
8 | 6, 7 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺) |
9 | 8 | fveq2d 6924 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘𝐺)) |
10 | df-invr 20414 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
11 | fvex 6933 | . . . 4 ⊢ (invg‘𝐺) ∈ V | |
12 | 9, 10, 11 | fvmpt 7029 | . . 3 ⊢ (𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
13 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = ∅) | |
14 | base0 17263 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
15 | eqid 2740 | . . . . . . 7 ⊢ (invg‘∅) = (invg‘∅) | |
16 | 14, 15 | grpinvfn 19021 | . . . . . 6 ⊢ (invg‘∅) Fn ∅ |
17 | fn0 6711 | . . . . . 6 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
18 | 16, 17 | mpbi 230 | . . . . 5 ⊢ (invg‘∅) = ∅ |
19 | 13, 18 | eqtr4di 2798 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘∅)) |
20 | fvprc 6912 | . . . . . . . 8 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
21 | 20 | oveq1d 7463 | . . . . . . 7 ⊢ (¬ 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈)) |
22 | 7, 21 | eqtrid 2792 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈)) |
23 | ress0 17302 | . . . . . 6 ⊢ (∅ ↾s 𝑈) = ∅ | |
24 | 22, 23 | eqtrdi 2796 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝐺 = ∅) |
25 | 24 | fveq2d 6924 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (invg‘𝐺) = (invg‘∅)) |
26 | 19, 25 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑅 ∈ V → (invr‘𝑅) = (invg‘𝐺)) |
27 | 12, 26 | pm2.61i 182 | . 2 ⊢ (invr‘𝑅) = (invg‘𝐺) |
28 | 1, 27 | eqtri 2768 | 1 ⊢ 𝐼 = (invg‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 invgcminusg 18974 mulGrpcmgp 20161 Unitcui 20381 invrcinvr 20413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-minusg 18977 df-invr 20414 |
This theorem is referenced by: unitinvcl 20416 unitinvinv 20417 unitlinv 20419 unitrinv 20420 rdivmuldivd 20439 invrpropd 20444 subrgugrp 20619 cntzsdrg 20825 cnmsubglem 21471 psgninv 21623 invrvald 22703 invrcn2 24209 nrginvrcn 24734 nrgtdrg 24735 sum2dchr 27336 ringinvval 33215 dvrcan5 33216 |
Copyright terms: Public domain | W3C validator |