MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invrfval Structured version   Visualization version   GIF version

Theorem invrfval 19417
Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfval.u 𝑈 = (Unit‘𝑅)
invrfval.g 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
invrfval.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
invrfval 𝐼 = (invg𝐺)

Proof of Theorem invrfval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 invrfval.i . 2 𝐼 = (invr𝑅)
2 fveq2 6664 . . . . . . 7 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
3 fveq2 6664 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
4 invrfval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
53, 4syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
62, 5oveq12d 7168 . . . . . 6 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s 𝑈))
7 invrfval.g . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
86, 7syl6eqr 2874 . . . . 5 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = 𝐺)
98fveq2d 6668 . . . 4 (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg𝐺))
10 df-invr 19416 . . . 4 invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
11 fvex 6677 . . . 4 (invg𝐺) ∈ V
129, 10, 11fvmpt 6762 . . 3 (𝑅 ∈ V → (invr𝑅) = (invg𝐺))
13 fvprc 6657 . . . . 5 𝑅 ∈ V → (invr𝑅) = ∅)
14 base0 16530 . . . . . . 7 ∅ = (Base‘∅)
15 eqid 2821 . . . . . . 7 (invg‘∅) = (invg‘∅)
1614, 15grpinvfn 18139 . . . . . 6 (invg‘∅) Fn ∅
17 fn0 6473 . . . . . 6 ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅)
1816, 17mpbi 232 . . . . 5 (invg‘∅) = ∅
1913, 18syl6eqr 2874 . . . 4 𝑅 ∈ V → (invr𝑅) = (invg‘∅))
20 fvprc 6657 . . . . . . . 8 𝑅 ∈ V → (mulGrp‘𝑅) = ∅)
2120oveq1d 7165 . . . . . . 7 𝑅 ∈ V → ((mulGrp‘𝑅) ↾s 𝑈) = (∅ ↾s 𝑈))
227, 21syl5eq 2868 . . . . . 6 𝑅 ∈ V → 𝐺 = (∅ ↾s 𝑈))
23 ress0 16552 . . . . . 6 (∅ ↾s 𝑈) = ∅
2422, 23syl6eq 2872 . . . . 5 𝑅 ∈ V → 𝐺 = ∅)
2524fveq2d 6668 . . . 4 𝑅 ∈ V → (invg𝐺) = (invg‘∅))
2619, 25eqtr4d 2859 . . 3 𝑅 ∈ V → (invr𝑅) = (invg𝐺))
2712, 26pm2.61i 184 . 2 (invr𝑅) = (invg𝐺)
281, 27eqtri 2844 1 𝐼 = (invg𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290   Fn wfn 6344  cfv 6349  (class class class)co 7150  s cress 16478  invgcminusg 18098  mulGrpcmgp 19233  Unitcui 19383  invrcinvr 19415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-slot 16481  df-base 16483  df-ress 16485  df-minusg 18101  df-invr 19416
This theorem is referenced by:  unitinvcl  19418  unitinvinv  19419  unitlinv  19421  unitrinv  19422  invrpropd  19442  subrgugrp  19548  cntzsdrg  19575  cnmsubglem  20602  psgninv  20720  invrvald  21279  invrcn2  22782  nrginvrcn  23295  nrgtdrg  23296  sum2dchr  25844  rdivmuldivd  30857  ringinvval  30858  dvrcan5  30859
  Copyright terms: Public domain W3C validator