Step | Hyp | Ref
| Expression |
1 | | cirng 33036 |
. 2
class
IntgRing |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | vs |
. . 3
setvar 𝑠 |
4 | | cvv 3472 |
. . 3
class
V |
5 | | vf |
. . . 4
setvar 𝑓 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑟 |
7 | 3 | cv 1538 |
. . . . . 6
class 𝑠 |
8 | | cress 17177 |
. . . . . 6
class
↾s |
9 | 6, 7, 8 | co 7411 |
. . . . 5
class (𝑟 ↾s 𝑠) |
10 | | cmn1 25878 |
. . . . 5
class
Monic1p |
11 | 9, 10 | cfv 6542 |
. . . 4
class
(Monic1p‘(𝑟 ↾s 𝑠)) |
12 | 5 | cv 1538 |
. . . . . . 7
class 𝑓 |
13 | | ces1 22052 |
. . . . . . . 8
class
evalSub1 |
14 | 6, 7, 13 | co 7411 |
. . . . . . 7
class (𝑟 evalSub1 𝑠) |
15 | 12, 14 | cfv 6542 |
. . . . . 6
class ((𝑟 evalSub1 𝑠)‘𝑓) |
16 | 15 | ccnv 5674 |
. . . . 5
class ◡((𝑟 evalSub1 𝑠)‘𝑓) |
17 | | c0g 17389 |
. . . . . . 7
class
0g |
18 | 6, 17 | cfv 6542 |
. . . . . 6
class
(0g‘𝑟) |
19 | 18 | csn 4627 |
. . . . 5
class
{(0g‘𝑟)} |
20 | 16, 19 | cima 5678 |
. . . 4
class (◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)}) |
21 | 5, 11, 20 | ciun 4996 |
. . 3
class ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)}) |
22 | 2, 3, 4, 4, 21 | cmpo 7413 |
. 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) |
23 | 1, 22 | wceq 1539 |
1
wff IntgRing =
(𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) |