Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-irng Structured version   Visualization version   GIF version

Definition df-irng 33684
Description: Define the subring of elements of a ring 𝑟 integral over a subset 𝑠. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux, 28-Jan-2025.)
Assertion
Ref Expression
df-irng IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
Distinct variable group:   𝑓,𝑟,𝑠

Detailed syntax breakdown of Definition df-irng
StepHypRef Expression
1 cirng 33683 . 2 class IntgRing
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3488 . . 3 class V
5 vf . . . 4 setvar 𝑓
62cv 1536 . . . . . 6 class 𝑟
73cv 1536 . . . . . 6 class 𝑠
8 cress 17287 . . . . . 6 class s
96, 7, 8co 7448 . . . . 5 class (𝑟s 𝑠)
10 cmn1 26185 . . . . 5 class Monic1p
119, 10cfv 6573 . . . 4 class (Monic1p‘(𝑟s 𝑠))
125cv 1536 . . . . . . 7 class 𝑓
13 ces1 22338 . . . . . . . 8 class evalSub1
146, 7, 13co 7448 . . . . . . 7 class (𝑟 evalSub1 𝑠)
1512, 14cfv 6573 . . . . . 6 class ((𝑟 evalSub1 𝑠)‘𝑓)
1615ccnv 5699 . . . . 5 class ((𝑟 evalSub1 𝑠)‘𝑓)
17 c0g 17499 . . . . . . 7 class 0g
186, 17cfv 6573 . . . . . 6 class (0g𝑟)
1918csn 4648 . . . . 5 class {(0g𝑟)}
2016, 19cima 5703 . . . 4 class (((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)})
215, 11, 20ciun 5015 . . 3 class 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)})
222, 3, 4, 4, 21cmpo 7450 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
231, 22wceq 1537 1 wff IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
Colors of variables: wff setvar class
This definition is referenced by:  irngval  33685
  Copyright terms: Public domain W3C validator