Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngval Structured version   Visualization version   GIF version

Theorem irngval 33685
Description: The elements of a field 𝑅 integral over a subset 𝑆. In the case of a subfield, those are the algebraic numbers over the field 𝑆 within the field 𝑅. That is, the numbers 𝑋 which are roots of monic polynomials 𝑃(𝑋) with coefficients in 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
irngval.r (𝜑𝑅 ∈ Ring)
irngval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
irngval (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑂   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓   𝜑,𝑓
Allowed substitution hint:   0 (𝑓)

Proof of Theorem irngval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irngval.r . . 3 (𝜑𝑅 ∈ Ring)
21elexd 3512 . 2 (𝜑𝑅 ∈ V)
3 irngval.b . . . . 5 𝐵 = (Base‘𝑅)
43fvexi 6934 . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝜑𝐵 ∈ V)
6 irngval.s . . 3 (𝜑𝑆𝐵)
75, 6ssexd 5342 . 2 (𝜑𝑆 ∈ V)
8 fvexd 6935 . . 3 (𝜑 → (Monic1p𝑈) ∈ V)
9 fvex 6933 . . . . . 6 (𝑂𝑓) ∈ V
109cnvex 7965 . . . . 5 (𝑂𝑓) ∈ V
1110imaex 7954 . . . 4 ((𝑂𝑓) “ { 0 }) ∈ V
1211rgenw 3071 . . 3 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V
13 iunexg 8004 . . 3 (((Monic1p𝑈) ∈ V ∧ ∀𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V) → 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V)
148, 12, 13sylancl 585 . 2 (𝜑 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V)
15 oveq12 7457 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟s 𝑠) = (𝑅s 𝑆))
16 irngval.u . . . . . 6 𝑈 = (𝑅s 𝑆)
1715, 16eqtr4di 2798 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟s 𝑠) = 𝑈)
1817fveq2d 6924 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (Monic1p‘(𝑟s 𝑠)) = (Monic1p𝑈))
19 oveq12 7457 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = (𝑅 evalSub1 𝑆))
20 irngval.o . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
2119, 20eqtr4di 2798 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = 𝑂)
2221fveq1d 6922 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂𝑓))
2322cnveqd 5900 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂𝑓))
24 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2524fveq2d 6924 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (0g𝑟) = (0g𝑅))
26 irngval.0 . . . . . . 7 0 = (0g𝑅)
2725, 26eqtr4di 2798 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (0g𝑟) = 0 )
2827sneqd 4660 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {(0g𝑟)} = { 0 })
2923, 28imaeq12d 6090 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}) = ((𝑂𝑓) “ { 0 }))
3018, 29iuneq12d 5044 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
31 df-irng 33684 . . 3 IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
3230, 31ovmpoga 7604 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V) → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
332, 7, 14, 32syl3anc 1371 1 (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  {csn 4648   ciun 5015  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  0gc0g 17499  Ringcrg 20260   evalSub1 ces1 22338  Monic1pcmn1 26185   IntgRing cirng 33683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-irng 33684
This theorem is referenced by:  elirng  33686
  Copyright terms: Public domain W3C validator