| Step | Hyp | Ref
| Expression |
| 1 | | irngval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | 1 | elexd 3488 |
. 2
⊢ (𝜑 → 𝑅 ∈ V) |
| 3 | | irngval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 4 | 3 | fvexi 6895 |
. . . 4
⊢ 𝐵 ∈ V |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
| 6 | | irngval.s |
. . 3
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 7 | 5, 6 | ssexd 5299 |
. 2
⊢ (𝜑 → 𝑆 ∈ V) |
| 8 | | fvexd 6896 |
. . 3
⊢ (𝜑 →
(Monic1p‘𝑈) ∈ V) |
| 9 | | fvex 6894 |
. . . . . 6
⊢ (𝑂‘𝑓) ∈ V |
| 10 | 9 | cnvex 7926 |
. . . . 5
⊢ ◡(𝑂‘𝑓) ∈ V |
| 11 | 10 | imaex 7915 |
. . . 4
⊢ (◡(𝑂‘𝑓) “ { 0 }) ∈
V |
| 12 | 11 | rgenw 3056 |
. . 3
⊢
∀𝑓 ∈
(Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ∈
V |
| 13 | | iunexg 7967 |
. . 3
⊢
(((Monic1p‘𝑈) ∈ V ∧ ∀𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ∈ V) →
∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ∈
V) |
| 14 | 8, 12, 13 | sylancl 586 |
. 2
⊢ (𝜑 → ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ∈
V) |
| 15 | | oveq12 7419 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 ↾s 𝑠) = (𝑅 ↾s 𝑆)) |
| 16 | | irngval.u |
. . . . . 6
⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| 17 | 15, 16 | eqtr4di 2789 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 ↾s 𝑠) = 𝑈) |
| 18 | 17 | fveq2d 6885 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Monic1p‘(𝑟 ↾s 𝑠)) =
(Monic1p‘𝑈)) |
| 19 | | oveq12 7419 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = (𝑅 evalSub1 𝑆)) |
| 20 | | irngval.o |
. . . . . . . 8
⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| 21 | 19, 20 | eqtr4di 2789 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = 𝑂) |
| 22 | 21 | fveq1d 6883 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂‘𝑓)) |
| 23 | 22 | cnveqd 5860 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ◡((𝑟 evalSub1 𝑠)‘𝑓) = ◡(𝑂‘𝑓)) |
| 24 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) |
| 25 | 24 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (0g‘𝑟) = (0g‘𝑅)) |
| 26 | | irngval.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
| 27 | 25, 26 | eqtr4di 2789 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (0g‘𝑟) = 0 ) |
| 28 | 27 | sneqd 4618 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {(0g‘𝑟)} = { 0 }) |
| 29 | 23, 28 | imaeq12d 6053 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)}) = (◡(𝑂‘𝑓) “ { 0 })) |
| 30 | 18, 29 | iuneq12d 5002 |
. . 3
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ∪
𝑓 ∈
(Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)}) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |
| 31 | | df-irng 33730 |
. . 3
⊢ IntgRing
= (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) |
| 32 | 30, 31 | ovmpoga 7566 |
. 2
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ∈ V) → (𝑅 IntgRing 𝑆) = ∪
𝑓 ∈
(Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |
| 33 | 2, 7, 14, 32 | syl3anc 1373 |
1
⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪
𝑓 ∈
(Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |