Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngval Structured version   Visualization version   GIF version

Theorem irngval 33680
Description: The elements of a field 𝑅 integral over a subset 𝑆. In the case of a subfield, those are the algebraic numbers over the field 𝑆 within the field 𝑅. That is, the numbers 𝑋 which are roots of monic polynomials 𝑃(𝑋) with coefficients in 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
irngval.r (𝜑𝑅 ∈ Ring)
irngval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
irngval (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑂   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓   𝜑,𝑓
Allowed substitution hint:   0 (𝑓)

Proof of Theorem irngval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irngval.r . . 3 (𝜑𝑅 ∈ Ring)
21elexd 3471 . 2 (𝜑𝑅 ∈ V)
3 irngval.b . . . . 5 𝐵 = (Base‘𝑅)
43fvexi 6872 . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝜑𝐵 ∈ V)
6 irngval.s . . 3 (𝜑𝑆𝐵)
75, 6ssexd 5279 . 2 (𝜑𝑆 ∈ V)
8 fvexd 6873 . . 3 (𝜑 → (Monic1p𝑈) ∈ V)
9 fvex 6871 . . . . . 6 (𝑂𝑓) ∈ V
109cnvex 7901 . . . . 5 (𝑂𝑓) ∈ V
1110imaex 7890 . . . 4 ((𝑂𝑓) “ { 0 }) ∈ V
1211rgenw 3048 . . 3 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V
13 iunexg 7942 . . 3 (((Monic1p𝑈) ∈ V ∧ ∀𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V) → 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V)
148, 12, 13sylancl 586 . 2 (𝜑 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V)
15 oveq12 7396 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟s 𝑠) = (𝑅s 𝑆))
16 irngval.u . . . . . 6 𝑈 = (𝑅s 𝑆)
1715, 16eqtr4di 2782 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟s 𝑠) = 𝑈)
1817fveq2d 6862 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (Monic1p‘(𝑟s 𝑠)) = (Monic1p𝑈))
19 oveq12 7396 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = (𝑅 evalSub1 𝑆))
20 irngval.o . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
2119, 20eqtr4di 2782 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = 𝑂)
2221fveq1d 6860 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂𝑓))
2322cnveqd 5839 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂𝑓))
24 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2524fveq2d 6862 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (0g𝑟) = (0g𝑅))
26 irngval.0 . . . . . . 7 0 = (0g𝑅)
2725, 26eqtr4di 2782 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (0g𝑟) = 0 )
2827sneqd 4601 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {(0g𝑟)} = { 0 })
2923, 28imaeq12d 6032 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}) = ((𝑂𝑓) “ { 0 }))
3018, 29iuneq12d 4985 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
31 df-irng 33679 . . 3 IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
3230, 31ovmpoga 7543 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V) → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
332, 7, 14, 32syl3anc 1373 1 (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  {csn 4589   ciun 4955  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  0gc0g 17402  Ringcrg 20142   evalSub1 ces1 22200  Monic1pcmn1 26031   IntgRing cirng 33678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-irng 33679
This theorem is referenced by:  elirng  33681
  Copyright terms: Public domain W3C validator