Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngval Structured version   Visualization version   GIF version

Theorem irngval 33206
Description: The elements of a field 𝑅 integral over a subset 𝑆. In the case of a subfield, those are the algebraic numbers over the field 𝑆 within the field 𝑅. That is, the numbers 𝑋 which are roots of monic polynomials 𝑃(𝑋) with coefficients in 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
irngval.r (𝜑𝑅 ∈ Ring)
irngval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
irngval (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑂   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓   𝜑,𝑓
Allowed substitution hint:   0 (𝑓)

Proof of Theorem irngval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irngval.r . . 3 (𝜑𝑅 ∈ Ring)
21elexd 3494 . 2 (𝜑𝑅 ∈ V)
3 irngval.b . . . . 5 𝐵 = (Base‘𝑅)
43fvexi 6905 . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝜑𝐵 ∈ V)
6 irngval.s . . 3 (𝜑𝑆𝐵)
75, 6ssexd 5324 . 2 (𝜑𝑆 ∈ V)
8 fvexd 6906 . . 3 (𝜑 → (Monic1p𝑈) ∈ V)
9 fvex 6904 . . . . . 6 (𝑂𝑓) ∈ V
109cnvex 7920 . . . . 5 (𝑂𝑓) ∈ V
1110imaex 7911 . . . 4 ((𝑂𝑓) “ { 0 }) ∈ V
1211rgenw 3064 . . 3 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V
13 iunexg 7954 . . 3 (((Monic1p𝑈) ∈ V ∧ ∀𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V) → 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V)
148, 12, 13sylancl 585 . 2 (𝜑 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V)
15 oveq12 7421 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟s 𝑠) = (𝑅s 𝑆))
16 irngval.u . . . . . 6 𝑈 = (𝑅s 𝑆)
1715, 16eqtr4di 2789 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟s 𝑠) = 𝑈)
1817fveq2d 6895 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (Monic1p‘(𝑟s 𝑠)) = (Monic1p𝑈))
19 oveq12 7421 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = (𝑅 evalSub1 𝑆))
20 irngval.o . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
2119, 20eqtr4di 2789 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 evalSub1 𝑠) = 𝑂)
2221fveq1d 6893 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂𝑓))
2322cnveqd 5875 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 evalSub1 𝑠)‘𝑓) = (𝑂𝑓))
24 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2524fveq2d 6895 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (0g𝑟) = (0g𝑅))
26 irngval.0 . . . . . . 7 0 = (0g𝑅)
2725, 26eqtr4di 2789 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (0g𝑟) = 0 )
2827sneqd 4640 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {(0g𝑟)} = { 0 })
2923, 28imaeq12d 6060 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → (((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}) = ((𝑂𝑓) “ { 0 }))
3018, 29iuneq12d 5025 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
31 df-irng 33205 . . 3 IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
3230, 31ovmpoga 7565 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ∈ V) → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
332, 7, 14, 32syl3anc 1370 1 (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  wss 3948  {csn 4628   ciun 4997  ccnv 5675  cima 5679  cfv 6543  (class class class)co 7412  Basecbs 17151  s cress 17180  0gc0g 17392  Ringcrg 20134   evalSub1 ces1 22153  Monic1pcmn1 25982   IntgRing cirng 33204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-irng 33205
This theorem is referenced by:  elirng  33207
  Copyright terms: Public domain W3C validator