|   | Mathbox for David A. Wheeler | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-irreflexive | Structured version Visualization version GIF version | ||
| Description: Define irreflexive relation; relation 𝑅 is irreflexive over the set 𝐴 iff ∀𝑥 ∈ 𝐴¬ 𝑥𝑅𝑥. Note that a relation can be neither reflexive nor irreflexive. (Contributed by David A. Wheeler, 1-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| df-irreflexive | ⊢ (𝑅Irreflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wirreflexive 49288 | . 2 wff 𝑅Irreflexive𝐴 | 
| 4 | 1, 1 | cxp 5683 | . . . 4 class (𝐴 × 𝐴) | 
| 5 | 2, 4 | wss 3951 | . . 3 wff 𝑅 ⊆ (𝐴 × 𝐴) | 
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑥 | 
| 8 | 7, 7, 2 | wbr 5143 | . . . . 5 wff 𝑥𝑅𝑥 | 
| 9 | 8 | wn 3 | . . . 4 wff ¬ 𝑥𝑅𝑥 | 
| 10 | 9, 6, 1 | wral 3061 | . . 3 wff ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 | 
| 11 | 5, 10 | wa 395 | . 2 wff (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) | 
| 12 | 3, 11 | wb 206 | 1 wff (𝑅Irreflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |