![]() |
Metamath
Proof Explorer Theorem List (p. 484 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | logbpw2m1 48301 | The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.) |
⊢ (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)) | ||
Theorem | fllog2 48302 | The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020.) |
⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ((2↑𝐼)..^(2↑(𝐼 + 1)))) → (⌊‘(2 logb 𝑁)) = 𝐼) | ||
Syntax | cblen 48303 | Extend class notation with the class of the binary length function. |
class #b | ||
Definition | df-blen 48304 | Define the binary length of an integer. Definition in section 1.3 of [AhoHopUll] p. 12. Although not restricted to integers, this definition is only meaningful for 𝑛 ∈ ℤ or even for 𝑛 ∈ ℂ. (Contributed by AV, 16-May-2020.) |
⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | ||
Theorem | blenval 48305 | The binary length of an integer. (Contributed by AV, 20-May-2020.) |
⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) | ||
Theorem | blen0 48306 | The binary length of 0. (Contributed by AV, 20-May-2020.) |
⊢ (#b‘0) = 1 | ||
Theorem | blenn0 48307 | The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.) |
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0) → (#b‘𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) | ||
Theorem | blenre 48308 | The binary length of a positive real number. (Contributed by AV, 20-May-2020.) |
⊢ (𝑁 ∈ ℝ+ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | ||
Theorem | blennn 48309 | The binary length of a positive integer. (Contributed by AV, 21-May-2020.) |
⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | ||
Theorem | blennnelnn 48310 | The binary length of a positive integer is a positive integer. (Contributed by AV, 25-May-2020.) |
⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℕ) | ||
Theorem | blennn0elnn 48311 | The binary length of a nonnegative integer is a positive integer. (Contributed by AV, 28-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → (#b‘𝑁) ∈ ℕ) | ||
Theorem | blenpw2 48312 | The binary length of a power of 2 is the exponent plus 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝐼 ∈ ℕ0 → (#b‘(2↑𝐼)) = (𝐼 + 1)) | ||
Theorem | blenpw2m1 48313 | The binary length of a power of 2 minus 1 is the exponent. (Contributed by AV, 31-May-2020.) |
⊢ (𝐼 ∈ ℕ → (#b‘((2↑𝐼) − 1)) = 𝐼) | ||
Theorem | nnpw2blen 48314 | A positive integer is between 2 to the power of its binary length minus 1 and 2 to the power of its binary length. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) | ||
Theorem | nnpw2blenfzo 48315 | A positive integer is between 2 to the power of the binary length of the integer minus 1, and 2 to the power of the binary length of the integer. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b‘𝑁) − 1))..^(2↑(#b‘𝑁)))) | ||
Theorem | nnpw2blenfzo2 48316 | A positive integer is either 2 to the power of the binary length of the integer minus 1, or between 2 to the power of the binary length of the integer minus 1, increased by 1, and 2 to the power of the binary length of the integer. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → (𝑁 = (2↑((#b‘𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b‘𝑁) − 1)) + 1)..^(2↑(#b‘𝑁))))) | ||
Theorem | nnpw2pmod 48317 | Every positive integer can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ → 𝑁 = ((2↑((#b‘𝑁) − 1)) + (𝑁 mod (2↑((#b‘𝑁) − 1))))) | ||
Theorem | blen1 48318 | The binary length of 1. (Contributed by AV, 21-May-2020.) |
⊢ (#b‘1) = 1 | ||
Theorem | blen2 48319 | The binary length of 2. (Contributed by AV, 21-May-2020.) |
⊢ (#b‘2) = 2 | ||
Theorem | nnpw2p 48320* | Every positive integer can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ → ∃𝑖 ∈ ℕ0 ∃𝑟 ∈ (0..^(2↑𝑖))𝑁 = ((2↑𝑖) + 𝑟)) | ||
Theorem | nnpw2pb 48321* | A number is a positive integer iff it can be represented as the sum of a power of 2 and a "remainder" smaller than the power. (Contributed by AV, 31-May-2020.) |
⊢ (𝑁 ∈ ℕ ↔ ∃𝑖 ∈ ℕ0 ∃𝑟 ∈ (0..^(2↑𝑖))𝑁 = ((2↑𝑖) + 𝑟)) | ||
Theorem | blen1b 48322 | The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) | ||
Theorem | blennnt2 48323 | The binary length of a positive integer, doubled and increased by 1, is the binary length of the integer plus 1. (Contributed by AV, 30-May-2010.) |
⊢ (𝑁 ∈ ℕ → (#b‘(2 · 𝑁)) = ((#b‘𝑁) + 1)) | ||
Theorem | nnolog2flm1 48324 | The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))) | ||
Theorem | blennn0em1 48325 | The binary length of the half of an even positive integer is the binary length of the integer minus 1. (Contributed by AV, 30-May-2010.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(𝑁 / 2)) = ((#b‘𝑁) − 1)) | ||
Theorem | blennngt2o2 48326 | The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1)) | ||
Theorem | blengt1fldiv2p1 48327 | The binary length of an integer greater than 1 is the binary length of the integer divided by 2, increased by one. (Contributed by AV, 3-Jun-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (#b‘𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1)) | ||
Theorem | blennn0e2 48328 | The binary length of an even positive integer is the binary length of the half of the integer, increased by 1. (Contributed by AV, 29-May-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘(𝑁 / 2)) + 1)) | ||
Generalization of df-bits 16468. In contrast to digit, bits are defined for integers only. The equivalence of both definitions for integers is shown in dig2bits 48348: if 𝐾 and 𝑁 are nonnegative integers, then ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁)). | ||
Syntax | cdig 48329 | Extend class notation with the class of the digit extraction operation. |
class digit | ||
Definition | df-dig 48330* | Definition of an operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝑏. 𝑘 = − 1 corresponds to the first digit of the fractional part (for 𝑏 = 10 the first digit after the decimal point), 𝑘 = 0 corresponds to the last digit of the integer part (for 𝑏 = 10 the first digit before the decimal point). See also digit1 14286. Examples (not formal): ( 234.567 ( digit ` 10 ) 0 ) = 4; ( 2.567 ( digit ` 10 ) -2 ) = 6; ( 2345.67 ( digit ` 10 ) 2 ) = 3. (Contributed by AV, 16-May-2020.) |
⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) | ||
Theorem | digfval 48331* | Operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) | ||
Theorem | digval 48332 | The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | ||
Theorem | digvalnn0 48333 | The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵 is a nonnegative integer. (Contributed by AV, 28-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) ∈ ℕ0) | ||
Theorem | nn0digval 48334 | The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘(𝑅 / (𝐵↑𝐾))) mod 𝐵)) | ||
Theorem | dignn0fr 48335 | The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ (ℤ ∖ ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)𝑁) = 0) | ||
Theorem | dignn0ldlem 48336 | Lemma for dignnld 48337. (Contributed by AV, 25-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ≥‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵↑𝐾)) | ||
Theorem | dignnld 48337 | The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ≥‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0) | ||
Theorem | dig2nn0ld 48338 | The leading digits of a positive integer in a binary system are 0. (Contributed by AV, 25-May-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ≥‘(#b‘𝑁))) → (𝐾(digit‘2)𝑁) = 0) | ||
Theorem | dig2nn1st 48339 | The first (relevant) digit of a positive integer in a binary system is 1. (Contributed by AV, 26-May-2020.) |
⊢ (𝑁 ∈ ℕ → (((#b‘𝑁) − 1)(digit‘2)𝑁) = 1) | ||
Theorem | dig0 48340 | All digits of 0 are 0. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)0) = 0) | ||
Theorem | digexp 48341 | The 𝐾 th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵↑𝑁)) = if(𝐾 = 𝑁, 1, 0)) | ||
Theorem | dig1 48342 | All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) | ||
Theorem | 0dig1 48343 | The 0 th digit of 1 is 1 in any positional system. (Contributed by AV, 28-May-2020.) |
⊢ (𝐵 ∈ (ℤ≥‘2) → (0(digit‘𝐵)1) = 1) | ||
Theorem | 0dig2pr01 48344 | The integers 0 and 1 correspond to their last bit. (Contributed by AV, 28-May-2010.) |
⊢ (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁) | ||
Theorem | dig2nn0 48345 | A digit of a nonnegative integer 𝑁 in a binary system is either 0 or 1. (Contributed by AV, 24-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) | ||
Theorem | 0dig2nn0e 48346 | The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) | ||
Theorem | 0dig2nn0o 48347 | The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1) | ||
Theorem | dig2bits 48348 | The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) | ||
Theorem | dignn0flhalflem1 48349 | Lemma 1 for dignn0flhalf 48352. (Contributed by AV, 7-Jun-2012.) |
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁)))) | ||
Theorem | dignn0flhalflem2 48350 | Lemma 2 for dignn0flhalf 48352. (Contributed by AV, 7-Jun-2012.) |
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) | ||
Theorem | dignn0ehalf 48351 | The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.) |
⊢ (((𝐴 / 2) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2))) | ||
Theorem | dignn0flhalf 48352 | The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) | ||
Theorem | nn0sumshdiglemA 48353* | Lemma for nn0sumshdig 48357 (induction step, even multiplier). (Contributed by AV, 3-Jun-2020.) |
⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
Theorem | nn0sumshdiglemB 48354* | Lemma for nn0sumshdig 48357 (induction step, odd multiplier). (Contributed by AV, 7-Jun-2020.) |
⊢ (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
Theorem | nn0sumshdiglem1 48355* | Lemma 1 for nn0sumshdig 48357 (induction step). (Contributed by AV, 7-Jun-2020.) |
⊢ (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
Theorem | nn0sumshdiglem2 48356* | Lemma 2 for nn0sumshdig 48357. (Contributed by AV, 7-Jun-2020.) |
⊢ (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b‘𝑎) = 𝐿 → 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) | ||
Theorem | nn0sumshdig 48357* | A nonnegative integer can be represented as sum of its shifted bits. (Contributed by AV, 7-Jun-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 = Σ𝑘 ∈ (0..^(#b‘𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))) | ||
Theorem | nn0mulfsum 48358* | Trivial algorithm to calculate the product of two nonnegative integers 𝑎 and 𝑏 by adding 𝑏 to itself 𝑎 times. (Contributed by AV, 17-May-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = Σ𝑘 ∈ (1...𝐴)𝐵) | ||
Theorem | nn0mullong 48359* | Standard algorithm (also known as "long multiplication" or "grade-school multiplication") to calculate the product of two nonnegative integers 𝑎 and 𝑏 by multiplying the multiplicand 𝑏 by each digit of the multiplier 𝑎 and then add up all the properly shifted results. Here, the binary representation of the multiplier 𝑎 is used, i.e., the above mentioned "digits" are 0 or 1. This is a similar result as provided by smumul 16539. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = Σ𝑘 ∈ (0..^(#b‘𝐴))(((𝑘(digit‘2)𝐴) · (2↑𝑘)) · 𝐵)) | ||
According to Wikipedia ("Arity", https://en.wikipedia.org/wiki/Arity, 19-May-2024): "In logic, mathematics, and computer science, arity is the number of arguments or operands taken by a function, operation or relation." N-ary functions are often also called multivariate functions, without indicating the actual number of arguments. See also Wikipedia ("Multivariate functions", 19-May-2024, https://en.wikipedia.org/wiki/Function_(mathematics)#Multivariate_functions ): "A multivariate function, multivariable function, or function of several variables is a function that depends on several arguments. ... Formally, a function of n variables is a function whose domain is a set of n-tuples. For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of integers. The same is true for every binary operation. Commonly, an n-tuple is denoted enclosed between parentheses, such as in ( 1 , 2 , ... , n ). When using functional notation, one usually omits the parentheses surrounding tuples, writing f ( x1 , ... , xn ) instead of f ( ( x1 , ... , xn ) ). Given n sets X1 , ... , Xn , the set of all n-tuples ( x1 , ... , xn ) such that x1 is element of X1 , ... , xn is element of Xn is called the Cartesian product of X1 , ... , Xn , and denoted X1 X ... X Xn . Therefore, a multivariate function is a function that has a Cartesian product or a proper subset of a Cartesian product as a domain: 𝑓:𝑈⟶𝑌 where where the domain 𝑈 has the form 𝑈 ⊆ ((...((𝑋‘1) × (𝑋‘2)) × ...) × (𝑋‘𝑛))." In the following, n-ary functions are defined as mappings (see df-map 8886) from a finite sequence of arguments, which themselves are defined as mappings from the half-open range of nonnegative integers to the domain of each argument. Furthermore, the definition is restricted to endofunctions, meaning that the domain(s) of the argument(s) is identical with its codomain. This means that the domains of all arguments are identical (in contrast to the definition in Wikipedia, see above: here, we have X1 = X2 = ... = Xn = X). For small n, n-ary functions correspond to "usual" functions with a different number of arguments: - n = 0 (nullary functions): These correspond actually to constants, see 0aryfvalelfv 48369 and mapsn 8946: (𝑋 ↑m {∅}) - n = 1 (unary functions): These correspond actually to usual endofunctions, see 1aryenef 48379 and efmndbas 18906: (𝑋 ↑m 𝑋) - n = 2 (binary functions): These correspond to usual operations on two elements of the same set, also called "binary operation" (according to Wikipedia ("Binary operation", 19-May-2024, https://en.wikipedia.org/wiki/Binary_operation 18906): "In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary operation whose two domains and the codomain are the same set." Sometimes also called "closed internal binary operation"), see 2aryenef 48390 and compare with df-clintop 47923: (𝑋 ↑m (𝑋 × 𝑋)). Instead of using indexed arguments (represented by a mapping as described above), elements of Cartesian exponentiations (𝑈↑↑𝑁) (see df-finxp 37350) could have been used to represent multiple arguments. However, this concept is not fully developed yet (it is within a mathbox), and it is currently based on ordinal numbers, e.g., (𝑈↑↑2o), instead of integers, e.g., (𝑈↑↑2), which is not very practical. The definition df-ixp of infinite Cartesian product could also have been used to represent multiple arguments, but this would have been more cumbersome without any additional advantage. naryfvalixp 48363 shows that both definitions are equivalent. | ||
Syntax | cnaryf 48360 | Extend the definition of a class to include the n-ary functions. |
class -aryF | ||
Definition | df-naryf 48361* | Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024.) (Revised by TA and SN, 7-Jun-2024.) |
⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | ||
Theorem | naryfval 48362 | The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | ||
Theorem | naryfvalixp 48363* | The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) | ||
Theorem | naryfvalel 48364 | An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | ||
Theorem | naryrcl 48365 | Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V)) | ||
Theorem | naryfvalelfv 48366 | The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.) |
⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) | ||
Theorem | naryfvalelwrdf 48367* | An n-ary (endo)function on a set 𝑋 expressed as a function over the set of words on 𝑋 of length 𝑛. (Contributed by AV, 4-Jun-2024.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:{𝑤 ∈ Word 𝑋 ∣ (♯‘𝑤) = 𝑁}⟶𝑋)) | ||
Theorem | 0aryfvalel 48368* | A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 48369. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) | ||
Theorem | 0aryfvalelfv 48369* | The value of a nullary (endo)function on a set 𝑋. (Contributed by AV, 19-May-2024.) |
⊢ (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥 ∈ 𝑋 (𝐹‘∅) = 𝑥) | ||
Theorem | 1aryfvalel 48370 | A unary (endo)function on a set 𝑋. (Contributed by AV, 15-May-2024.) |
⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (1-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0})⟶𝑋)) | ||
Theorem | fv1arycl 48371 | Closure of a unary (endo)function. (Contributed by AV, 18-May-2024.) |
⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) | ||
Theorem | 1arympt1 48372* | A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴:𝑋⟶𝑋) → 𝐹 ∈ (1-aryF 𝑋)) | ||
Theorem | 1arympt1fv 48373* | The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) | ||
Theorem | 1arymaptfv 48374* | The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) | ||
Theorem | 1arymaptf 48375* | The mapping of unary (endo)functions is a function into the set of endofunctions. (Contributed by AV, 18-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)⟶(𝑋 ↑m 𝑋)) | ||
Theorem | 1arymaptf1 48376* | The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–1-1→(𝑋 ↑m 𝑋)) | ||
Theorem | 1arymaptfo 48377* | The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–onto→(𝑋 ↑m 𝑋)) | ||
Theorem | 1arymaptf1o 48378* | The mapping of unary (endo)functions is a one-to-one function onto the set of endofunctions. (Contributed by AV, 19-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) | ||
Theorem | 1aryenef 48379 | The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) | ||
Theorem | 1aryenefmnd 48380 | The set of unary (endo)functions and the base set of the monoid of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
⊢ (1-aryF 𝑋) ≈ (Base‘(EndoFMnd‘𝑋)) | ||
Theorem | 2aryfvalel 48381 | A binary (endo)function on a set 𝑋. (Contributed by AV, 20-May-2024.) |
⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) | ||
Theorem | fv2arycl 48382 | Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) |
⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) | ||
Theorem | 2arympt 48383* | A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) | ||
Theorem | 2arymptfv 48384* | The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐴〉, 〈1, 𝐵〉}) = (𝐴𝑂𝐵)) | ||
Theorem | 2arymaptfv 48385* | The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | ||
Theorem | 2arymaptf 48386* | The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2arymaptf1 48387* | The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–1-1→(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2arymaptfo 48388* | The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–onto→(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2arymaptf1o 48389* | The mapping of binary (endo)functions is a one-to-one function onto the set of binary operations. (Contributed by AV, 23-May-2024.) |
⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | ||
Theorem | 2aryenef 48390 | The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) | ||
According to Wikipedia ("Ackermann function", 8-May-2024, https://en.wikipedia.org/wiki/Ackermann_function): "In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. ... One common version is the two-argument Ackermann-Péter function developed by Rózsa Péter and Raphael Robinson. Its value grows very rapidly; for example, A(4,2) results in 2^65536-3 [see ackval42 48430)], an integer of 19,729 decimal digits." In the following, the Ackermann function is defined as iterated 1-ary function (also mentioned in Wikipedia), see df-ack 48394, based on a definition IterComp of "the n-th iterate of (a class/function) f", see df-itco 48393. As an illustration, we have ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹 ∘ 𝐹))) (see itcoval3 48399). The following recursive definition of the Ackermann function follows immediately from Definition df-ack 48394: ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)). That Definition df-ack 48394 is equivalent to Péter's definition is proven by the following three theorems: ackval0val 48420: ((Ack‘0)‘𝑀) = (𝑀 + 1); ackvalsuc0val 48421: ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1); ackvalsucsucval 48422: ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)). The initial values of the Ackermann function are calculated in the following four theorems: ackval0012 48423: 𝐴(0, 0) = 1, 𝐴(0, 1) = 2, 𝐴(0, 2) = 3; ackval1012 48424: 𝐴(1, 0) = 2, 𝐴(1, 1) = 3, 𝐴(1, 3) = 4; ackval2012 48425: 𝐴(2, 0) = 3, 𝐴(2, 1) = 5, 𝐴(2, 3) = 7; ackval3012 48426: 𝐴(3, 0) = 5, 𝐴(3, 1) = ;13, 𝐴(3, 3) = ;29. | ||
Syntax | citco 48391 | Extend the definition of a class to include iterated functions. |
class IterComp | ||
Syntax | cack 48392 | Extend the definition of a class to include the Ackermann function operator. |
class Ack | ||
Definition | df-itco 48393* | Define a function (recursively) that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.) |
⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | ||
Definition | df-ack 48394* | Define the Ackermann function (recursively). (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.) |
⊢ Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) | ||
Theorem | itcoval 48395* | The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | ||
Theorem | itcoval0 48396 | A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024.) |
⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | ||
Theorem | itcoval1 48397 | A function iterated once. (Contributed by AV, 2-May-2024.) |
⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | ||
Theorem | itcoval2 48398 | A function iterated twice. (Contributed by AV, 2-May-2024.) |
⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) | ||
Theorem | itcoval3 48399 | A function iterated three times. (Contributed by AV, 2-May-2024.) |
⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹 ∘ 𝐹))) | ||
Theorem | itcoval0mpt 48400* | A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024.) |
⊢ 𝐹 = (𝑛 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ 𝐴 ↦ 𝑛)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |