| Metamath
Proof Explorer Theorem List (p. 484 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rngccoALTV 48301 | Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
| Theorem | rngccatidALTV 48302* | Lemma for rngccatALTV 48303. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) | ||
| Theorem | rngccatALTV 48303 | The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | rngcidALTV 48304 | The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
| Theorem | rngcsectALTV 48305 | A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
| Theorem | rngcinvALTV 48306 | An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
| Theorem | rngcisoALTV 48307 | An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) | ||
| Theorem | rngchomffvalALTV 48308* | The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐹 = (Homf ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHom 𝑦))) | ||
| Theorem | rngchomrnghmresALTV 48309 | The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ 𝐵 = (Rng ∩ 𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐹 = (Homf ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( RngHom ↾ (𝐵 × 𝐵))) | ||
| Theorem | rngcrescrhmALTV 48310 | The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) | ||
| Theorem | rhmsubcALTVlem1 48311 | Lemma 1 for rhmsubcALTV 48315. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | ||
| Theorem | rhmsubcALTVlem2 48312 | Lemma 2 for rhmsubcALTV 48315. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | rhmsubcALTVlem3 48313* | Lemma 3 for rhmsubcALTV 48315. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubcALTVlem4 48314* | Lemma 4 for rhmsubcALTV 48315. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubcALTV 48315 | According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) | ||
| Theorem | rhmsubcALTVcat 48316 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → ((RngCatALTV‘𝑈) ↾cat 𝐻) ∈ Cat) | ||
As an alternative to df-ringc 20559, the "category of unital rings" can be defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, according to dfringc2 20570. | ||
| Syntax | cringcALTV 48317 | Extend class notation to include the category Ring. (New usage is discouraged.) |
| class RingCatALTV | ||
| Definition | df-ringcALTV 48318* | Definition of the category Ring, relativized to a subset 𝑢. This is the category of all rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
| ⊢ RingCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Ring) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) | ||
| Theorem | ringcvalALTV 48319* | Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RingHom 𝑦))) & ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | funcringcsetcALTV2lem1 48320* | Lemma 1 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
| Theorem | funcringcsetcALTV2lem2 48321* | Lemma 2 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
| Theorem | funcringcsetcALTV2lem3 48322* | Lemma 3 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
| Theorem | funcringcsetcALTV2lem4 48323* | Lemma 4 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
| Theorem | funcringcsetcALTV2lem5 48324* | Lemma 5 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) | ||
| Theorem | funcringcsetcALTV2lem6 48325* | Lemma 6 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
| Theorem | funcringcsetcALTV2lem7 48326* | Lemma 7 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
| Theorem | funcringcsetcALTV2lem8 48327* | Lemma 8 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
| Theorem | funcringcsetcALTV2lem9 48328* | Lemma 9 for funcringcsetcALTV2 48329. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
| Theorem | funcringcsetcALTV2 48329* | The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | ringcbasALTV 48330 | Set of objects of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | ||
| Theorem | ringchomfvalALTV 48331* | Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RingHom 𝑦))) | ||
| Theorem | ringchomALTV 48332 | Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | elringchomALTV 48333 | A morphism of rings is a function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
| Theorem | ringccofvalALTV 48334* | Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | ||
| Theorem | ringccoALTV 48335 | Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 RingHom 𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌 RingHom 𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
| Theorem | ringccatidALTV 48336* | Lemma for ringccatALTV 48337. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) | ||
| Theorem | ringccatALTV 48337 | The category of rings is a category. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | ringcidALTV 48338 | The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
| Theorem | ringcsectALTV 48339 | A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
| Theorem | ringcinvALTV 48340 | An inverse in the category of rings is the converse operation. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
| Theorem | ringcisoALTV 48341 | An isomorphism in the category of rings is a bijection. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) | ||
| Theorem | ringcbasbasALTV 48342 | An element of the base set of the base set of the category of rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) | ||
| Theorem | funcringcsetclem1ALTV 48343* | Lemma 1 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
| Theorem | funcringcsetclem2ALTV 48344* | Lemma 2 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
| Theorem | funcringcsetclem3ALTV 48345* | Lemma 3 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
| Theorem | funcringcsetclem4ALTV 48346* | Lemma 4 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
| Theorem | funcringcsetclem5ALTV 48347* | Lemma 5 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) | ||
| Theorem | funcringcsetclem6ALTV 48348* | Lemma 6 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
| Theorem | funcringcsetclem7ALTV 48349* | Lemma 7 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
| Theorem | funcringcsetclem8ALTV 48350* | Lemma 8 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
| Theorem | funcringcsetclem9ALTV 48351* | Lemma 9 for funcringcsetcALTV 48352. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
| Theorem | funcringcsetcALTV 48352* | The "natural forgetful functor" from the category of rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | srhmsubcALTVlem1 48353* | Lemma 1 for srhmsubcALTV 48355. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) | ||
| Theorem | srhmsubcALTVlem2 48354* | Lemma 2 for srhmsubcALTV 48355. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌)) | ||
| Theorem | srhmsubcALTV 48355* | According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) | ||
| Theorem | sringcatALTV 48356* | The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | crhmsubcALTV 48357* | According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) | ||
| Theorem | cringcatALTV 48358* | The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | drhmsubcALTV 48359* | According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) | ||
| Theorem | drngcatALTV 48360* | The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | fldcatALTV 48361* | The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) | ||
| Theorem | fldcALTV 48362* | The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) | ||
| Theorem | fldhmsubcALTV 48363* | According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽))) | ||
| Theorem | eliunxp2 48364* | Membership in a union of Cartesian products over its second component, analogous to eliunxp 5777. (Contributed by AV, 30-Mar-2019.) |
| ⊢ (𝐶 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | ||
| Theorem | mpomptx2 48365* | Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐴(𝑦) is not assumed to be constant w.r.t 𝑦, analogous to mpomptx 7459. (Contributed by AV, 30-Mar-2019.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | cbvmpox2 48366* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7440 allows 𝐴 to be a function of 𝑦, analogous to cbvmpox 7439. (Contributed by AV, 30-Mar-2019.) |
| ⊢ Ⅎ𝑧𝐴 & ⊢ Ⅎ𝑦𝐷 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑦 = 𝑧 → 𝐴 = 𝐷) & ⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) | ||
| Theorem | dmmpossx2 48367* | The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx 7998. (Contributed by AV, 30-Mar-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | ||
| Theorem | mpoexxg2 48368* | Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg 8007. (Contributed by AV, 30-Mar-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐵 ∈ 𝑅 ∧ ∀𝑦 ∈ 𝐵 𝐴 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | ovmpordxf 48369* | Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7496. (Contributed by AV, 30-Mar-2019.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) & ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝐿) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑆 & ⊢ Ⅎ𝑦𝑆 ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpordx 48370* | Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7496. (Contributed by AV, 30-Mar-2019.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) & ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝐿) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | ovmpox2 48371* | The value of an operation class abstraction. Variant of ovmpoga 7500 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) & ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐿) & ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | ||
| Theorem | fdmdifeqresdif 48372* | The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝑌, 𝑋, (𝐺‘𝑥))) ⇒ ⊢ (𝐺:(𝐷 ∖ {𝑌})⟶𝑅 → 𝐺 = (𝐹 ↾ (𝐷 ∖ {𝑌}))) | ||
| Theorem | ofaddmndmap 48373 | The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑌 ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → (𝐴 ∘f + 𝐵) ∈ (𝑅 ↑m 𝑉)) | ||
| Theorem | mapsnop 48374 | A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.) |
| ⊢ 𝐹 = {〈𝑋, 𝑌〉} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) | ||
| Theorem | fprmappr 48375 | A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ (𝑋 ↑m {𝐴, 𝐵})) | ||
| Theorem | mapprop 48376 | An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.) |
| ⊢ 𝐹 = {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} ⇒ ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) | ||
| Theorem | ztprmneprm 48377 | A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵 → 𝐴 = 𝐵)) | ||
| Theorem | 2t6m3t4e0 48378 | 2 times 6 minus 3 times 4 equals 0. (Contributed by AV, 24-May-2019.) |
| ⊢ ((2 · 6) − (3 · 4)) = 0 | ||
| Theorem | ssnn0ssfz 48379* | For any finite subset of ℕ0, find a superset in the form of a set of sequential integers, analogous to ssnnssfz 32765. (Contributed by AV, 30-Sep-2019.) |
| ⊢ (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → ∃𝑛 ∈ ℕ0 𝐴 ⊆ (0...𝑛)) | ||
| Theorem | nn0sumltlt 48380 | If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019.) |
| ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0) → ((𝑎 + 𝑏) < 𝑐 → 𝑏 < 𝑐)) | ||
| Theorem | bcpascm1 48381 | Pascal's rule for the binomial coefficient, generalized to all integers 𝐾, shifted down by 1. (Contributed by AV, 8-Sep-2019.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝑁 − 1)C𝐾) + ((𝑁 − 1)C(𝐾 − 1))) = (𝑁C𝐾)) | ||
| Theorem | altgsumbc 48382* | The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 48381) instead of the binomial theorem (binom 15734), see altgsumbcALT 48383. (Contributed by AV, 13-Sep-2019.) |
| ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) | ||
| Theorem | altgsumbcALT 48383* | Alternate proof of altgsumbc 48382, using Pascal's rule (bcpascm1 48381) instead of the binomial theorem (binom 15734). (Contributed by AV, 8-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) | ||
| Theorem | zlmodzxzlmod 48384 | The ℤ-module ℤ × ℤ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) ⇒ ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) | ||
| Theorem | zlmodzxzel 48385 | An element of the (base set of the) ℤ-module ℤ × ℤ. (Contributed by AV, 21-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (Base‘𝑍)) | ||
| Theorem | zlmodzxz0 48386 | The 0 of the ℤ-module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} ⇒ ⊢ 0 = (0g‘𝑍) | ||
| Theorem | zlmodzxzscm 48387 | The scalar multiplication of the ℤ-module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ ∙ = ( ·𝑠 ‘𝑍) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∙ {〈0, 𝐵〉, 〈1, 𝐶〉}) = {〈0, (𝐴 · 𝐵)〉, 〈1, (𝐴 · 𝐶)〉}) | ||
| Theorem | zlmodzxzadd 48388 | The addition of the ℤ-module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ + = (+g‘𝑍) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} + {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 + 𝐵)〉, 〈1, (𝐶 + 𝐷)〉}) | ||
| Theorem | zlmodzxzsubm 48389 | The subtraction of the ℤ-module ℤ × ℤ expressed as addition. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ − = (-g‘𝑍) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = ({〈0, 𝐴〉, 〈1, 𝐶〉} (+g‘𝑍)(-1( ·𝑠 ‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}))) | ||
| Theorem | zlmodzxzsub 48390 | The subtraction of the ℤ-module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ − = (-g‘𝑍) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) | ||
| Theorem | mgpsumunsn 48391* | Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) & ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) | ||
| Theorem | mgpsumz 48392* | If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the zero of the ring, the group sum itself is zero. (Contributed by AV, 29-Dec-2018.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝑘 = 𝐼 → 𝐴 = 0 ) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = 0 ) | ||
| Theorem | mgpsumn 48393* | If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐼 ∈ 𝑁) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) | ||
| Theorem | exple2lt6 48394 | A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁↑𝑁) < 6) | ||
| Theorem | pgrple2abl 48395 | Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel) | ||
| Theorem | pgrpgt2nabl 48396 | Every symmetric group on a set with more than 2 elements is not abelian, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 2 < (♯‘𝐴)) → 𝐺 ∉ Abel) | ||
| Theorem | invginvrid 48397 | Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = 𝑋) | ||
| Theorem | rmsupp0 48398* | The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) | ||
| Theorem | domnmsuppn0 48399* | The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = (𝐴 supp (0g‘𝑀))) | ||
| Theorem | rmsuppss 48400* | The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |