Detailed syntax breakdown of Definition df-isubgr
| Step | Hyp | Ref
| Expression |
| 1 | | cisubgr 47846 |
. 2
class
ISubGr |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vv |
. . 3
setvar 𝑣 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 6 | | cvtx 29013 |
. . . . 5
class
Vtx |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(Vtx‘𝑔) |
| 8 | 7 | cpw 4600 |
. . 3
class 𝒫
(Vtx‘𝑔) |
| 9 | 3 | cv 1539 |
. . . 4
class 𝑣 |
| 10 | | ve |
. . . . 5
setvar 𝑒 |
| 11 | | ciedg 29014 |
. . . . . 6
class
iEdg |
| 12 | 5, 11 | cfv 6561 |
. . . . 5
class
(iEdg‘𝑔) |
| 13 | 10 | cv 1539 |
. . . . . 6
class 𝑒 |
| 14 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 15 | 14 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 16 | 15, 13 | cfv 6561 |
. . . . . . . 8
class (𝑒‘𝑥) |
| 17 | 16, 9 | wss 3951 |
. . . . . . 7
wff (𝑒‘𝑥) ⊆ 𝑣 |
| 18 | 13 | cdm 5685 |
. . . . . . 7
class dom 𝑒 |
| 19 | 17, 14, 18 | crab 3436 |
. . . . . 6
class {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣} |
| 20 | 13, 19 | cres 5687 |
. . . . 5
class (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣}) |
| 21 | 10, 12, 20 | csb 3899 |
. . . 4
class
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣}) |
| 22 | 9, 21 | cop 4632 |
. . 3
class
〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉 |
| 23 | 2, 3, 4, 8, 22 | cmpo 7433 |
. 2
class (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ 〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) |
| 24 | 1, 23 | wceq 1540 |
1
wff ISubGr =
(𝑔 ∈ V, 𝑣 ∈ 𝒫
(Vtx‘𝑔) ↦
〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) |