Detailed syntax breakdown of Definition df-isubgr
Step | Hyp | Ref
| Expression |
1 | | cisubgr 47732 |
. 2
class
ISubGr |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | vv |
. . 3
setvar 𝑣 |
4 | | cvv 3488 |
. . 3
class
V |
5 | 2 | cv 1536 |
. . . . 5
class 𝑔 |
6 | | cvtx 29031 |
. . . . 5
class
Vtx |
7 | 5, 6 | cfv 6573 |
. . . 4
class
(Vtx‘𝑔) |
8 | 7 | cpw 4622 |
. . 3
class 𝒫
(Vtx‘𝑔) |
9 | 3 | cv 1536 |
. . . 4
class 𝑣 |
10 | | ve |
. . . . 5
setvar 𝑒 |
11 | | ciedg 29032 |
. . . . . 6
class
iEdg |
12 | 5, 11 | cfv 6573 |
. . . . 5
class
(iEdg‘𝑔) |
13 | 10 | cv 1536 |
. . . . . 6
class 𝑒 |
14 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
15 | 14 | cv 1536 |
. . . . . . . . 9
class 𝑥 |
16 | 15, 13 | cfv 6573 |
. . . . . . . 8
class (𝑒‘𝑥) |
17 | 16, 9 | wss 3976 |
. . . . . . 7
wff (𝑒‘𝑥) ⊆ 𝑣 |
18 | 13 | cdm 5700 |
. . . . . . 7
class dom 𝑒 |
19 | 17, 14, 18 | crab 3443 |
. . . . . 6
class {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣} |
20 | 13, 19 | cres 5702 |
. . . . 5
class (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣}) |
21 | 10, 12, 20 | csb 3921 |
. . . 4
class
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣}) |
22 | 9, 21 | cop 4654 |
. . 3
class
〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉 |
23 | 2, 3, 4, 8, 22 | cmpo 7450 |
. 2
class (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ 〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) |
24 | 1, 23 | wceq 1537 |
1
wff ISubGr =
(𝑔 ∈ V, 𝑣 ∈ 𝒫
(Vtx‘𝑔) ↦
〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) |