Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-isubgr Structured version   Visualization version   GIF version

Definition df-isubgr 47785
Description: Define the function mapping graphs and subsets of their vertices to their induced subgraphs. A subgraph induced by a subset of vertices of a graph is a subgraph of the graph which contains all edges of the graph that join vertices of the subgraph (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). Although a graph may be given in any meaningful representation, its induced subgraphs are always ordered pairs of vertices and edges. (Contributed by AV, 27-Apr-2025.)
Assertion
Ref Expression
df-isubgr ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
Distinct variable group:   𝑒,𝑔,𝑣,𝑥

Detailed syntax breakdown of Definition df-isubgr
StepHypRef Expression
1 cisubgr 47784 . 2 class ISubGr
2 vg . . 3 setvar 𝑔
3 vv . . 3 setvar 𝑣
4 cvv 3478 . . 3 class V
52cv 1536 . . . . 5 class 𝑔
6 cvtx 29028 . . . . 5 class Vtx
75, 6cfv 6563 . . . 4 class (Vtx‘𝑔)
87cpw 4605 . . 3 class 𝒫 (Vtx‘𝑔)
93cv 1536 . . . 4 class 𝑣
10 ve . . . . 5 setvar 𝑒
11 ciedg 29029 . . . . . 6 class iEdg
125, 11cfv 6563 . . . . 5 class (iEdg‘𝑔)
1310cv 1536 . . . . . 6 class 𝑒
14 vx . . . . . . . . . 10 setvar 𝑥
1514cv 1536 . . . . . . . . 9 class 𝑥
1615, 13cfv 6563 . . . . . . . 8 class (𝑒𝑥)
1716, 9wss 3963 . . . . . . 7 wff (𝑒𝑥) ⊆ 𝑣
1813cdm 5689 . . . . . . 7 class dom 𝑒
1917, 14, 18crab 3433 . . . . . 6 class {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}
2013, 19cres 5691 . . . . 5 class (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})
2110, 12, 20csb 3908 . . . 4 class (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})
229, 21cop 4637 . . 3 class 𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩
232, 3, 4, 8, 22cmpo 7433 . 2 class (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
241, 23wceq 1537 1 wff ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
Colors of variables: wff setvar class
This definition is referenced by:  isisubgr  47786
  Copyright terms: Public domain W3C validator