Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isisubgr Structured version   Visualization version   GIF version

Theorem isisubgr 47429
Description: The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isisubgr.v 𝑉 = (Vtx‘𝐺)
isisubgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isisubgr ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem isisubgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3482 . . 3 (𝐺𝑊𝐺 ∈ V)
21adantr 479 . 2 ((𝐺𝑊𝑆𝑉) → 𝐺 ∈ V)
3 isisubgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
43fvexi 6915 . . . . 5 𝑉 ∈ V
54a1i 11 . . . 4 (𝑆𝑉𝑉 ∈ V)
6 id 22 . . . 4 (𝑆𝑉𝑆𝑉)
75, 6sselpwd 5333 . . 3 (𝑆𝑉𝑆 ∈ 𝒫 𝑉)
87adantl 480 . 2 ((𝐺𝑊𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
9 opex 5470 . . 3 𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V
109a1i 11 . 2 ((𝐺𝑊𝑆𝑉) → ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V)
11 simpr 483 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑆) → 𝑣 = 𝑆)
12 fvexd 6916 . . . . 5 ((𝑔 = 𝐺𝑣 = 𝑆) → (iEdg‘𝑔) ∈ V)
13 fveq2 6901 . . . . . . . . . 10 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
14 isisubgr.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
1513, 14eqtr4di 2784 . . . . . . . . 9 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐸)
1615eqeq2d 2737 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒 = (iEdg‘𝑔) ↔ 𝑒 = 𝐸))
1716adantr 479 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = (iEdg‘𝑔) ↔ 𝑒 = 𝐸))
18 simpr 483 . . . . . . . . . 10 ((𝑣 = 𝑆𝑒 = 𝐸) → 𝑒 = 𝐸)
19 dmeq 5910 . . . . . . . . . . . 12 (𝑒 = 𝐸 → dom 𝑒 = dom 𝐸)
2019adantl 480 . . . . . . . . . . 11 ((𝑣 = 𝑆𝑒 = 𝐸) → dom 𝑒 = dom 𝐸)
21 fveq1 6900 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝑒𝑥) = (𝐸𝑥))
2221adantl 480 . . . . . . . . . . . 12 ((𝑣 = 𝑆𝑒 = 𝐸) → (𝑒𝑥) = (𝐸𝑥))
23 simpl 481 . . . . . . . . . . . 12 ((𝑣 = 𝑆𝑒 = 𝐸) → 𝑣 = 𝑆)
2422, 23sseq12d 4013 . . . . . . . . . . 11 ((𝑣 = 𝑆𝑒 = 𝐸) → ((𝑒𝑥) ⊆ 𝑣 ↔ (𝐸𝑥) ⊆ 𝑆))
2520, 24rabeqbidv 3437 . . . . . . . . . 10 ((𝑣 = 𝑆𝑒 = 𝐸) → {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣} = {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})
2618, 25reseq12d 5990 . . . . . . . . 9 ((𝑣 = 𝑆𝑒 = 𝐸) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
2726ex 411 . . . . . . . 8 (𝑣 = 𝑆 → (𝑒 = 𝐸 → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
2827adantl 480 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = 𝐸 → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
2917, 28sylbid 239 . . . . . 6 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = (iEdg‘𝑔) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
3029imp 405 . . . . 5 (((𝑔 = 𝐺𝑣 = 𝑆) ∧ 𝑒 = (iEdg‘𝑔)) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
3112, 30csbied 3930 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑆) → (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
3211, 31opeq12d 4887 . . 3 ((𝑔 = 𝐺𝑣 = 𝑆) → ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩ = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
33 fveq2 6901 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3433, 3eqtr4di 2784 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
3534pweqd 4624 . . 3 (𝑔 = 𝐺 → 𝒫 (Vtx‘𝑔) = 𝒫 𝑉)
36 df-isubgr 47428 . . 3 ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
3732, 35, 36ovmpox 7579 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ∧ ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
382, 8, 10, 37syl3anc 1368 1 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  csb 3892  wss 3947  𝒫 cpw 4607  cop 4639  dom cdm 5682  cres 5684  cfv 6554  (class class class)co 7424  Vtxcvtx 28932  iEdgciedg 28933   ISubGr cisubgr 47427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-res 5694  df-iota 6506  df-fun 6556  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-isubgr 47428
This theorem is referenced by:  isubgriedg  47430  isubgrvtxuhgr  47431  isubgrvtx  47432  isubgr0uhgr  47438
  Copyright terms: Public domain W3C validator