Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isisubgr Structured version   Visualization version   GIF version

Theorem isisubgr 47875
Description: The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isisubgr.v 𝑉 = (Vtx‘𝐺)
isisubgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isisubgr ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem isisubgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3480 . . 3 (𝐺𝑊𝐺 ∈ V)
21adantr 480 . 2 ((𝐺𝑊𝑆𝑉) → 𝐺 ∈ V)
3 isisubgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
43fvexi 6890 . . . . 5 𝑉 ∈ V
54a1i 11 . . . 4 (𝑆𝑉𝑉 ∈ V)
6 id 22 . . . 4 (𝑆𝑉𝑆𝑉)
75, 6sselpwd 5298 . . 3 (𝑆𝑉𝑆 ∈ 𝒫 𝑉)
87adantl 481 . 2 ((𝐺𝑊𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
9 opex 5439 . . 3 𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V
109a1i 11 . 2 ((𝐺𝑊𝑆𝑉) → ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V)
11 simpr 484 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑆) → 𝑣 = 𝑆)
12 fvexd 6891 . . . . 5 ((𝑔 = 𝐺𝑣 = 𝑆) → (iEdg‘𝑔) ∈ V)
13 fveq2 6876 . . . . . . . . . 10 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
14 isisubgr.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
1513, 14eqtr4di 2788 . . . . . . . . 9 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐸)
1615eqeq2d 2746 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒 = (iEdg‘𝑔) ↔ 𝑒 = 𝐸))
1716adantr 480 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = (iEdg‘𝑔) ↔ 𝑒 = 𝐸))
18 simpr 484 . . . . . . . . . 10 ((𝑣 = 𝑆𝑒 = 𝐸) → 𝑒 = 𝐸)
19 dmeq 5883 . . . . . . . . . . . 12 (𝑒 = 𝐸 → dom 𝑒 = dom 𝐸)
2019adantl 481 . . . . . . . . . . 11 ((𝑣 = 𝑆𝑒 = 𝐸) → dom 𝑒 = dom 𝐸)
21 fveq1 6875 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝑒𝑥) = (𝐸𝑥))
2221adantl 481 . . . . . . . . . . . 12 ((𝑣 = 𝑆𝑒 = 𝐸) → (𝑒𝑥) = (𝐸𝑥))
23 simpl 482 . . . . . . . . . . . 12 ((𝑣 = 𝑆𝑒 = 𝐸) → 𝑣 = 𝑆)
2422, 23sseq12d 3992 . . . . . . . . . . 11 ((𝑣 = 𝑆𝑒 = 𝐸) → ((𝑒𝑥) ⊆ 𝑣 ↔ (𝐸𝑥) ⊆ 𝑆))
2520, 24rabeqbidv 3434 . . . . . . . . . 10 ((𝑣 = 𝑆𝑒 = 𝐸) → {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣} = {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})
2618, 25reseq12d 5967 . . . . . . . . 9 ((𝑣 = 𝑆𝑒 = 𝐸) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
2726ex 412 . . . . . . . 8 (𝑣 = 𝑆 → (𝑒 = 𝐸 → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
2827adantl 481 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = 𝐸 → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
2917, 28sylbid 240 . . . . . 6 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = (iEdg‘𝑔) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
3029imp 406 . . . . 5 (((𝑔 = 𝐺𝑣 = 𝑆) ∧ 𝑒 = (iEdg‘𝑔)) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
3112, 30csbied 3910 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑆) → (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
3211, 31opeq12d 4857 . . 3 ((𝑔 = 𝐺𝑣 = 𝑆) → ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩ = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
33 fveq2 6876 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3433, 3eqtr4di 2788 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
3534pweqd 4592 . . 3 (𝑔 = 𝐺 → 𝒫 (Vtx‘𝑔) = 𝒫 𝑉)
36 df-isubgr 47874 . . 3 ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
3732, 35, 36ovmpox 7560 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ∧ ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
382, 8, 10, 37syl3anc 1373 1 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  csb 3874  wss 3926  𝒫 cpw 4575  cop 4607  dom cdm 5654  cres 5656  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976   ISubGr cisubgr 47873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-isubgr 47874
This theorem is referenced by:  isubgriedg  47876  isubgrvtxuhgr  47877  isubgrvtx  47880  isubgr0uhgr  47886
  Copyright terms: Public domain W3C validator