Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isisubgr Structured version   Visualization version   GIF version

Theorem isisubgr 47734
Description: The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isisubgr.v 𝑉 = (Vtx‘𝐺)
isisubgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isisubgr ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑆   𝑥,𝑉
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem isisubgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . 3 (𝐺𝑊𝐺 ∈ V)
21adantr 480 . 2 ((𝐺𝑊𝑆𝑉) → 𝐺 ∈ V)
3 isisubgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
43fvexi 6934 . . . . 5 𝑉 ∈ V
54a1i 11 . . . 4 (𝑆𝑉𝑉 ∈ V)
6 id 22 . . . 4 (𝑆𝑉𝑆𝑉)
75, 6sselpwd 5346 . . 3 (𝑆𝑉𝑆 ∈ 𝒫 𝑉)
87adantl 481 . 2 ((𝐺𝑊𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
9 opex 5484 . . 3 𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V
109a1i 11 . 2 ((𝐺𝑊𝑆𝑉) → ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V)
11 simpr 484 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑆) → 𝑣 = 𝑆)
12 fvexd 6935 . . . . 5 ((𝑔 = 𝐺𝑣 = 𝑆) → (iEdg‘𝑔) ∈ V)
13 fveq2 6920 . . . . . . . . . 10 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
14 isisubgr.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
1513, 14eqtr4di 2798 . . . . . . . . 9 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐸)
1615eqeq2d 2751 . . . . . . . 8 (𝑔 = 𝐺 → (𝑒 = (iEdg‘𝑔) ↔ 𝑒 = 𝐸))
1716adantr 480 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = (iEdg‘𝑔) ↔ 𝑒 = 𝐸))
18 simpr 484 . . . . . . . . . 10 ((𝑣 = 𝑆𝑒 = 𝐸) → 𝑒 = 𝐸)
19 dmeq 5928 . . . . . . . . . . . 12 (𝑒 = 𝐸 → dom 𝑒 = dom 𝐸)
2019adantl 481 . . . . . . . . . . 11 ((𝑣 = 𝑆𝑒 = 𝐸) → dom 𝑒 = dom 𝐸)
21 fveq1 6919 . . . . . . . . . . . . 13 (𝑒 = 𝐸 → (𝑒𝑥) = (𝐸𝑥))
2221adantl 481 . . . . . . . . . . . 12 ((𝑣 = 𝑆𝑒 = 𝐸) → (𝑒𝑥) = (𝐸𝑥))
23 simpl 482 . . . . . . . . . . . 12 ((𝑣 = 𝑆𝑒 = 𝐸) → 𝑣 = 𝑆)
2422, 23sseq12d 4042 . . . . . . . . . . 11 ((𝑣 = 𝑆𝑒 = 𝐸) → ((𝑒𝑥) ⊆ 𝑣 ↔ (𝐸𝑥) ⊆ 𝑆))
2520, 24rabeqbidv 3462 . . . . . . . . . 10 ((𝑣 = 𝑆𝑒 = 𝐸) → {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣} = {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})
2618, 25reseq12d 6010 . . . . . . . . 9 ((𝑣 = 𝑆𝑒 = 𝐸) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
2726ex 412 . . . . . . . 8 (𝑣 = 𝑆 → (𝑒 = 𝐸 → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
2827adantl 481 . . . . . . 7 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = 𝐸 → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
2917, 28sylbid 240 . . . . . 6 ((𝑔 = 𝐺𝑣 = 𝑆) → (𝑒 = (iEdg‘𝑔) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})))
3029imp 406 . . . . 5 (((𝑔 = 𝐺𝑣 = 𝑆) ∧ 𝑒 = (iEdg‘𝑔)) → (𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
3112, 30csbied 3959 . . . 4 ((𝑔 = 𝐺𝑣 = 𝑆) → (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣}) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆}))
3211, 31opeq12d 4905 . . 3 ((𝑔 = 𝐺𝑣 = 𝑆) → ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩ = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
33 fveq2 6920 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3433, 3eqtr4di 2798 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
3534pweqd 4639 . . 3 (𝑔 = 𝐺 → 𝒫 (Vtx‘𝑔) = 𝒫 𝑉)
36 df-isubgr 47733 . . 3 ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
3732, 35, 36ovmpox 7603 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ∧ ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩ ∈ V) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
382, 8, 10, 37syl3anc 1371 1 ((𝐺𝑊𝑆𝑉) → (𝐺 ISubGr 𝑆) = ⟨𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑆})⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  csb 3921  wss 3976  𝒫 cpw 4622  cop 4654  dom cdm 5700  cres 5702  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032   ISubGr cisubgr 47732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-isubgr 47733
This theorem is referenced by:  isubgriedg  47735  isubgrvtxuhgr  47736  isubgrvtx  47737  isubgr0uhgr  47743
  Copyright terms: Public domain W3C validator